Weizman L, Eldar Y C, Eilam A, Londner S, Artzi M, Ben Bashat D
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7486-9. doi: 10.1109/EMBC.2015.7320123.
In many clinical MRI scenarios, existing imaging information can be used to significantly shorten acquisition time or improve Signal to Noise Ratio (SNR). In those cases, a previously acquired image can serve as a reference image, that may exhibit similarity in some sense to the image being acquired. Examples include similarity between adjacent slices in high resolution MRI, similarity between various contrasts in the same scans and similarity between different scans of the same patients. In this paper we present a general framework for utilizing reference images for fast MRI. We take into account that the reference image may exhibit low similarity with the acquired image and develop a hybrid adaptive-weighted approach for sampling and reconstruction. Experiments demonstrate the performance of the method in three different clinical MRI scenarios: SNR improvement in high resolution brain MRI, utilizing similarity between T2-weighted and fluid-attenuated inversion recovery (FLAIR) for fast FLAIR scanning and utilizing similarity between baseline and follow-up scans for fast follow-up scanning.
在许多临床磁共振成像(MRI)场景中,现有的成像信息可用于显著缩短采集时间或提高信噪比(SNR)。在这些情况下,先前采集的图像可作为参考图像,在某种意义上可能与正在采集的图像具有相似性。示例包括高分辨率MRI中相邻切片之间的相似性、同一扫描中不同对比度之间的相似性以及同一患者不同扫描之间的相似性。在本文中,我们提出了一个利用参考图像进行快速MRI的通用框架。我们考虑到参考图像可能与采集的图像相似度较低,并开发了一种用于采样和重建的混合自适应加权方法。实验证明了该方法在三种不同临床MRI场景中的性能:高分辨率脑MRI中的SNR改善、利用T2加权和液体衰减反转恢复(FLAIR)之间的相似性进行快速FLAIR扫描以及利用基线扫描和随访扫描之间的相似性进行快速随访扫描。