School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University , Tianjin 300072, People's Republic of China.
Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072, People's Republic of China.
ACS Appl Mater Interfaces. 2016 Feb 3;8(4):2495-504. doi: 10.1021/acsami.5b09058. Epub 2016 Jan 20.
High-quality microsized ultrathin single-crystalline anatase TiO2 nanosheets (MS-TiO2) with exposed {001} facets were synthesized by a facile and low-cost two-step process that combines a graphene oxide (GO)-assisted hydrothermal method with calcination. Both GO and HF play an important role in the formation of well dispersed MS-TiO2. As a novel microsized (1-4 μm) ultrathin two-dimensional (2D) material, MS-TiO2 possesses much higher lateral size and aspect ratio compared to common 2D nanosized (30-60 nm) ultrathin TiO2 nanosheets (NS-TiO2), resulting in excellent electronic conductivity and superior electron transfer and diffusion properties. Here, we fabricated MS-TiO2 and NS-TiO2, both of which were incorporated with the TiO2 nanoparticles (P25) to constitute the hybrid photoanode of dye-sensitized solar cells (DSSCs), and explored the effect of the lateral size (nano- and micro-) of ultrathin TiO2 nanosheets on their electron transfer and diffusion properties. Benefiting from the faster electron transfer rate and short diffusion path of the MS-TiO2, the MS-TiO2/P25 gains the more superior performance compared to pure P25 and NS-TiO2/P25 in the application of DSSCs. Moreover, it is expected that the novel high aspect ratio MS-TiO2 may be applied in diverse fields including photocatalysis, photodetectors, lithium-ion batteries and others concerning the environment and energy.
高质量的微尺寸超薄锐钛矿 TiO2 纳米片(MS-TiO2)具有暴露的 {001} 面,通过一种简便且低成本的两步法合成,该方法结合了氧化石墨烯(GO)辅助的水热法和煅烧。GO 和 HF 在 MS-TiO2 的良好分散形成中都起着重要作用。作为一种新型的微尺寸(1-4μm)超薄二维(2D)材料,MS-TiO2 具有比常见的二维纳米尺寸(30-60nm)超薄 TiO2 纳米片(NS-TiO2)更高的横向尺寸和纵横比,从而具有优异的电子导电性以及优越的电子转移和扩散性能。在这里,我们制备了 MS-TiO2 和 NS-TiO2,它们都与 TiO2 纳米颗粒(P25)结合构成染料敏化太阳能电池(DSSC)的混合光阳极,并探索了超薄 TiO2 纳米片的横向尺寸(纳米和微)对其电子转移和扩散性能的影响。受益于 MS-TiO2 更快的电子转移速率和较短的扩散路径,MS-TiO2/P25 在 DSSC 的应用中表现出比纯 P25 和 NS-TiO2/P25 更优异的性能。此外,预期新型高纵横比的 MS-TiO2 可能应用于包括光催化、光电探测器、锂离子电池和其他与环境和能源相关的多个领域。