Suppr超能文献

用于锂硫电池中多硫化物捕获的独立式TiO纳米草管状混合膜。

Free-standing TiO nanograssy tubular hybrid membrane for polysulfide trapping in Li-S battery.

作者信息

Dasarathan Suriyakumar, Sung Junghwan, Hong Jeong-Won, Jo Yung-Soo, Kim Byung Gon, Lee You-Jin, Choi Hae-Young, Park Jun-Woo, Kim Doohun

机构信息

Next Generation Battery Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI) Jeongiui-gil 12, Seongsan-gu Changwon Gyeongsangnam-do 51543 Republic of Korea

Department of Electro-functional Materials Engineering, University of Science and Technology (UST) Jeongiui-gil 12, Seongsan-gu Changwon Gyeongsangnam-do 51543 Republic of Korea.

出版信息

RSC Adv. 2023 Mar 13;13(12):8299-8306. doi: 10.1039/d3ra00349c. eCollection 2023 Mar 8.

Abstract

During the growth of anodic TiO nanotubes with a high layer thickness of greater than 20 μm, "nanograss" structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g after 100 cycles at 0.1C in Li-S batteries.

摘要

在生长厚度大于20μm的高层厚度阳极TiO纳米管时,“纳米草”结构通常会在最外表面形成。这是因为在长时间暴露于含F离子的电解质中时会出现氧化管的刻蚀。这些TiO纳米管层具有高纵横比,在管顶部有惊人的纳米草结构束,尤其是管内具有锐钛矿微晶的高表面积。通过两步阳极氧化与橡胶聚合物粘合剂的杂交协同作用,成功获得了由具有纳米晶颗粒的纳米草表面组成的独立纳米管层。在高效的多硫化物捕获和电解质扰动下,这种纳米管混合膜在锂硫电池中于0.1C下循环100次后,可提供618 mA h g的容量的富集性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ef/10010071/d5c3bf5998f6/d3ra00349c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验