Suppr超能文献

自组装诱导交替堆叠的单层 MoS2 和 N 掺杂石墨烯:一种用于锂离子电池的新型范德华异质结。

Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries.

机构信息

School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore.

Institute of Materials Research and Engineering , A*STAR, 3 Research Link, 117602, Singapore.

出版信息

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):2372-9. doi: 10.1021/acsami.5b11492. Epub 2016 Jan 15.

Abstract

In this article, a simple self-assembly strategy for fabricating van der Waals heterostructures from isolated two-dimensional atomic crystals is presented. Specifically, dopamine (DOPA), an excellent self-assembly agent and carbon precursor, was adsorbed on exfoliated MoS2 monolayers through electrostatic interaction, and the surface-modified monolayers self-assembled spontaneously into DOPA-intercalated MoS2. The subsequent in situ conversion of DOPA to highly conductive nitrogen-doped graphene (NDG) in the interlayer space of MoS2 led to the formation of a novel NDG/MoS2 nanocomposite with well-defined alternating structure. The NDG/MoS2 was then studied as an anode for lithium-ion batteries (LIBs). The results show that alternating arrangement of NDG and MoS2 triggers synergistic effect between the two components. The kinetics and cycle life of the anode are greatly improved due to the enhanced electron and Li(+) transport as well as the effective immobilization of soluble polysulfide by NDG. A reversible capacity of more than 460 mAh/g could be delivered even at 5 A/g. Moreover, the abundant voids created at the MoS2-NDG interface also accommodate the volume change during cycling and provide additional active sites for Li(+) storage. These endow the NDG/MoS2 heterostructure with low charge-transfer resistance, high sulfur reservation, and structural robustness, rendering it an advanced anode material for LIBs.

摘要

本文提出了一种从二维原子晶体中简单自组装范德华异质结构的策略。具体来说,多巴胺(DOPA)是一种优异的自组装剂和碳前体,通过静电相互作用吸附在剥离的 MoS2 单层上,表面修饰的单层自发自组装成 DOPA 插层 MoS2。随后,DOPA 在 MoS2 层间空间原位转化为高导电性的氮掺杂石墨烯(NDG),形成具有明确交替结构的新型 NDG/MoS2 纳米复合材料。然后,将 NDG/MoS2 用作锂离子电池(LIB)的阳极。结果表明,NDG 和 MoS2 的交替排列引发了两种成分之间的协同效应。由于 NDG 增强了电子和 Li(+)传输以及对可溶性多硫化物的有效固定,因此阳极的动力学和循环寿命得到了极大改善。即使在 5 A/g 的电流密度下,仍可提供超过 460 mAh/g 的可逆容量。此外,MoS2-NDG 界面处形成的丰富空隙还可以容纳循环过程中的体积变化,并为 Li(+)存储提供额外的活性位点。这些赋予了 NDG/MoS2 异质结构低电荷转移电阻、高硫保留率和结构稳定性,使其成为 LIB 的先进阳极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验