Gascón Sergio, Murenu Elisa, Masserdotti Giacomo, Ortega Felipe, Russo Gianluca L, Petrik David, Deshpande Aditi, Heinrich Christophe, Karow Marisa, Robertson Stephen P, Schroeder Timm, Beckers Johannes, Irmler Martin, Berndt Carsten, Angeli José P Friedmann, Conrad Marcus, Berninger Benedikt, Götz Magdalena
Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany.
Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany.
Cell Stem Cell. 2016 Mar 3;18(3):396-409. doi: 10.1016/j.stem.2015.12.003. Epub 2015 Dec 31.
Despite the widespread interest in direct neuronal reprogramming, the mechanisms underpinning fate conversion remain largely unknown. Our study revealed a critical time point after which cells either successfully convert into neurons or succumb to cell death. Co-transduction with Bcl-2 greatly improved negotiation of this critical point by faster neuronal differentiation. Surprisingly, mutants with reduced or no affinity for Bax demonstrated that Bcl-2 exerts this effect by an apoptosis-independent mechanism. Consistent with a caspase-independent role, ferroptosis inhibitors potently increased neuronal reprogramming by inhibiting lipid peroxidation occurring during fate conversion. Genome-wide expression analysis confirmed that treatments promoting neuronal reprogramming elicit an anti-oxidative stress response. Importantly, co-expression of Bcl-2 and anti-oxidative treatments leads to an unprecedented improvement in glial-to-neuron conversion after traumatic brain injury in vivo, underscoring the relevance of these pathways in cellular reprograming irrespective of cell type in vitro and in vivo.
尽管人们对直接神经元重编程有着广泛的兴趣,但命运转换背后的机制在很大程度上仍然未知。我们的研究揭示了一个关键时间点,在此之后细胞要么成功转化为神经元,要么死于细胞死亡。与Bcl-2共转导通过更快的神经元分化极大地改善了对这个关键点的跨越。令人惊讶的是,对Bax亲和力降低或没有亲和力的突变体表明,Bcl-2通过一种不依赖凋亡的机制发挥这种作用。与不依赖半胱天冬酶的作用一致,铁死亡抑制剂通过抑制命运转换过程中发生的脂质过氧化作用,有力地增加了神经元重编程。全基因组表达分析证实,促进神经元重编程的处理会引发抗氧化应激反应。重要的是,Bcl-2与抗氧化处理的共表达在体内创伤性脑损伤后导致胶质细胞向神经元的转化得到了前所未有的改善,强调了这些途径在细胞重编程中的相关性,无论在体外还是体内,均与细胞类型无关。