Maddhesiya Priya, Lepko Tjasa, Steiner-Mezzardi Andrea, Schneider Julia, Schwarz Veronika, Merl-Pham Juliane, Berger Finja, Hauck Stefanie M, Ronfani Lorenza, Bianchi Marco, Simon Tatiana, Krontira Anthodesmi, Masserdotti Giacomo, Götz Magdalena, Ninkovic Jovica
Department of Cell Biology and Anatomy, Biomedical Center Munich (BMC), Medical Faculty, LMU, Munich, Germany.
Graduate School of Systemic Neurosciences, LMU, Munich, Germany.
Genome Biol. 2025 Apr 17;26(1):100. doi: 10.1186/s13059-025-03556-z.
Direct conversion of reactive glial cells to neurons is a promising avenue for neuronal replacement therapies after brain injury or neurodegeneration. The overexpression of neurogenic fate determinants in glial cells results in conversion to neurons. For repair purposes, the conversion should ideally be induced in the pathology-induced neuroinflammatory environment. However, very little is known regarding the influence of the injury-induced neuroinflammatory environment and released growth factors on the direct conversion process.
We establish a new in vitro culture system of postnatal astrocytes without epidermal growth factor that reflects the direct conversion rate in the injured, neuroinflammatory environment in vivo. We demonstrate that the growth factor combination corresponding to the injured environment defines the ability of glia to be directly converted to neurons. Using this culture system, we show that chromatin structural protein high mobility group box 2 (HMGB2) regulates the direct conversion rate downstream of the growth factor combination. We further demonstrate that Hmgb2 cooperates with neurogenic fate determinants, such as Neurog2, in opening chromatin at the loci of genes regulating neuronal maturation and synapse formation. Consequently, early chromatin rearrangements occur during direct fate conversion and are necessary for full fate conversion.
Our data demonstrate novel growth factor-controlled regulation of gene expression during direct fate conversion. This regulation is crucial for proper maturation of induced neurons and could be targeted to improve the repair process.
将反应性胶质细胞直接转化为神经元是脑损伤或神经退行性变后神经元替代疗法的一个有前景的途径。胶质细胞中神经源性命运决定因子的过表达会导致其转化为神经元。出于修复目的,理想情况下应在病理诱导的神经炎症环境中诱导这种转化。然而,关于损伤诱导的神经炎症环境和释放的生长因子对直接转化过程的影响,我们知之甚少。
我们建立了一种新的无表皮生长因子的新生星形胶质细胞体外培养系统,该系统反映了体内损伤的神经炎症环境中的直接转化率。我们证明,与损伤环境相对应的生长因子组合决定了胶质细胞直接转化为神经元的能力。利用这个培养系统,我们表明染色质结构蛋白高迁移率族蛋白B2(HMGB2)在生长因子组合的下游调节直接转化率。我们进一步证明,Hmgb2与神经源性命运决定因子(如Neurog2)协同作用,在调节神经元成熟和突触形成的基因位点打开染色质。因此,早期染色质重排在直接命运转化过程中发生,并且是完全命运转化所必需的。
我们的数据证明了在直接命运转化过程中基因表达受新型生长因子控制的调节。这种调节对于诱导神经元的正常成熟至关重要,并且可以作为靶点来改善修复过程。