Suppr超能文献

控制CaV钙通道门控特性的电压传感器中的分子相互作用。

Molecular Interactions in the Voltage Sensor Controlling Gating Properties of CaV Calcium Channels.

作者信息

Tuluc Petronel, Yarov-Yarovoy Vladimir, Benedetti Bruno, Flucher Bernhard E

机构信息

Department of Physiology and Medical Physics, Medical University Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria; Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.

Department of Physiology and Membrane Biology, UC Davis, Davis, CA 95616, USA.

出版信息

Structure. 2016 Feb 2;24(2):261-71. doi: 10.1016/j.str.2015.11.011. Epub 2015 Dec 31.

Abstract

Voltage-gated calcium channels (CaV) regulate numerous vital functions in nerve and muscle cells. To fulfill their diverse functions, the multiple members of the CaV channel family are activated over a wide range of voltages. Voltage sensing in potassium and sodium channels involves the sequential transition of positively charged amino acids across a ring of residues comprising the charge transfer center. In CaV channels, the precise molecular mechanism underlying voltage sensing remains elusive. Here we combined Rosetta structural modeling with site-directed mutagenesis to identify the molecular mechanism responsible for the specific gating properties of two CaV1.1 splice variants. Our data reveal previously unnoticed interactions of S4 arginines with an aspartate (D1196) outside the charge transfer center of the fourth voltage-sensing domain that are regulated by alternative splicing of the S3-S4 linker. These interactions facilitate the final transition into the activated state and critically determine the voltage sensitivity and current amplitude of these CaV channels.

摘要

电压门控钙通道(CaV)调节神经和肌肉细胞中的众多重要功能。为了履行其多样的功能,CaV通道家族的多个成员在很宽的电压范围内被激活。钾通道和钠通道中的电压传感涉及带正电荷的氨基酸跨包含电荷转移中心的一圈残基的顺序转变。在CaV通道中,电压传感背后的确切分子机制仍然难以捉摸。在这里,我们将Rosetta结构建模与定点诱变相结合,以确定负责两种CaV1.1剪接变体特定门控特性的分子机制。我们的数据揭示了S4精氨酸与第四电压传感结构域电荷转移中心外的天冬氨酸(D1196)之间以前未被注意到的相互作用,这些相互作用受S3-S4连接体的可变剪接调控。这些相互作用促进最终转变为激活状态,并严格决定这些CaV通道的电压敏感性和电流幅度。

相似文献

引用本文的文献

5
Fifty years of gating currents and channel gating.门控电流和通道门控的五十年。
J Gen Physiol. 2023 Aug 7;155(8). doi: 10.1085/jgp.202313380. Epub 2023 Jul 6.

本文引用的文献

1
Functional heterogeneity of the four voltage sensors of a human L-type calcium channel.人类L型钙通道四个电压传感器的功能异质性。
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18381-6. doi: 10.1073/pnas.1411127112. Epub 2014 Dec 8.
2
Moving gating charges through the gating pore in a Kv channel voltage sensor.在 Kv 通道电压传感器的门控孔中移动门控电荷。
Proc Natl Acad Sci U S A. 2014 May 13;111(19):E1950-9. doi: 10.1073/pnas.1406161111. Epub 2014 Apr 29.
10
Tracking a complete voltage-sensor cycle with metal-ion bridges.用金属离子桥追踪完整的电压传感器循环。
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8552-7. doi: 10.1073/pnas.1116938109. Epub 2012 Apr 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验