文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

骨科中的人工智能:基础、当前应用及未来展望。

Artificial intelligence in orthopedics: fundamentals, current applications, and future perspectives.

作者信息

Song Jian, Wang Guang-Chao, Wang Si-Cheng, He Chong-Ru, Zhang Ying-Ze, Chen Xiao, Su Jia-Can

机构信息

Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China.

出版信息

Mil Med Res. 2025 Aug 4;12(1):42. doi: 10.1186/s40779-025-00633-z.


DOI:10.1186/s40779-025-00633-z
PMID:40754583
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12320344/
Abstract

Conventional diagnostic and therapeutic approaches in orthopedics are frequently time intensive and associated with elevated rates of diagnostic error, underscoring the urgent need for more efficient tools to improve the current situation. Recently, artificial intelligence (AI) has been increasingly integrated into orthopedic practice, providing data-driven approaches to support diagnostic and therapeutic processes. With the continuous advancement of AI technologies and their incorporation into routine orthopedic workflows, a comprehensive understanding of AI principles and their clinical applications has become increasingly essential. The review commences with a summary of the core concepts and historical evolution of AI, followed by an examination of machine learning and deep learning frameworks designed for orthopedic clinical and research applications. We then explore various AI-based applications in orthopedics, including image analysis, disease diagnosis, and treatment approaches such as surgical assistance, drug development, rehabilitation support, and personalized therapy. These applications are designed to help researchers and clinicians gain a deeper understanding of the current applications of AI in orthopedics. The review also highlights key challenges and limitations that affect the practical use of AI, such as data quality, model generalizability, and clinical validation. Finally, we discuss possible future directions for improving AI technologies and promoting their safe and effective integration into orthopedic care.

摘要

骨科传统的诊断和治疗方法通常耗时较长,且诊断错误率较高,这凸显了迫切需要更高效的工具来改善当前状况。近年来,人工智能(AI)已越来越多地融入骨科实践,提供数据驱动的方法来支持诊断和治疗过程。随着人工智能技术的不断进步及其纳入常规骨科工作流程,全面了解人工智能原理及其临床应用变得越来越重要。本文综述首先总结了人工智能的核心概念和历史演变,接着考察了为骨科临床和研究应用设计的机器学习和深度学习框架。然后,我们探讨了骨科中基于人工智能的各种应用,包括图像分析、疾病诊断以及手术辅助、药物研发、康复支持和个性化治疗等治疗方法。这些应用旨在帮助研究人员和临床医生更深入地了解人工智能在骨科中的当前应用。本文综述还强调了影响人工智能实际应用的关键挑战和局限性,如数据质量、模型通用性和临床验证。最后,我们讨论了改进人工智能技术并促进其安全有效地融入骨科护理的可能未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df33/12320344/b666ed5f482e/40779_2025_633_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df33/12320344/f7ed5481f61b/40779_2025_633_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df33/12320344/ac1d83e4343c/40779_2025_633_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df33/12320344/b666ed5f482e/40779_2025_633_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df33/12320344/f7ed5481f61b/40779_2025_633_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df33/12320344/ac1d83e4343c/40779_2025_633_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df33/12320344/b666ed5f482e/40779_2025_633_Fig3_HTML.jpg

相似文献

[1]
Artificial intelligence in orthopedics: fundamentals, current applications, and future perspectives.

Mil Med Res. 2025-8-4

[2]
Artificial Intelligence in Pediatric Orthopedics: A Comprehensive Review.

Medicina (Kaunas). 2025-5-22

[3]
The Use of Artificial Intelligence and Wearable Inertial Measurement Units in Medicine: Systematic Review.

JMIR Mhealth Uhealth. 2025-1-29

[4]
Artificial intelligence in orthopedic trauma: a comprehensive review.

Injury. 2025-8

[5]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[6]
Machine Learning, Deep Learning, Artificial Intelligence and Aesthetic Plastic Surgery: A Qualitative Systematic Review.

Aesthetic Plast Surg. 2025-1

[7]
AML diagnostics in the 21st century: Use of AI.

Semin Hematol. 2025-6-16

[8]
Assessing the Emergence and Evolution of Artificial Intelligence and Machine Learning Research in Neuroradiology.

AJNR Am J Neuroradiol. 2024-9-9

[9]
A Systematic Review and Bibliometric Analysis of Applications of Artificial Intelligence and Machine Learning in Vascular Surgery.

Ann Vasc Surg. 2022-9

[10]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

本文引用的文献

[1]
The ACL Café Menu: Individualised treatment of anterior cruciate ligament injuries-From prevention to conservative treatment, repair and reconstruction.

Knee Surg Sports Traumatol Arthrosc. 2025-8

[2]
Osteoarthritis burden and inequality from 1990 to 2021: a systematic analysis for the global burden of disease Study 2021.

Sci Rep. 2025-3-10

[3]
Applications of Artificial Intelligence in Acute Thoracic Imaging.

Can Assoc Radiol J. 2025-8

[4]
A Deep Learning Tool for Minimum Joint Space Width Calculation on Antero-posterior Knee Radiographs.

J Arthroplasty. 2025-8

[5]
Factors associated with new fractures in adjacent vertebrae after percutaneous vertebroplasty for osteoporotic vertebral compression fractures.

Am J Transl Res. 2024-11-15

[6]
Radiomics and radiogenomics: extracting more information from medical images for the diagnosis and prognostic prediction of ovarian cancer.

Mil Med Res. 2024-12-14

[7]
The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning.

Cancers (Basel). 2024-11-1

[8]
The diagnostic value of artificial intelligence-assisted imaging for developmental dysplasia of the hip: a systematic review and meta-analysis.

J Orthop Surg Res. 2024-8-29

[9]
Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion.

Artif Intell Med. 2024-9

[10]
Unleashing the power of generative AI in drug discovery.

Drug Discov Today. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索