Offenbacher Hannes, Lüftner Daniel, Ules Thomas, Reinisch Eva Maria, Koller Georg, Puschnig Peter, Ramsey Michael G
Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria.
J Electron Spectros Relat Phenomena. 2015 Oct 1;204(Pt A):92-101. doi: 10.1016/j.elspec.2015.04.023.
The frontier orbitals of molecules are the prime determinants of their chemical, optical and electronic properties. Arguably, the most direct method of addressing the (filled) frontier orbitals is ultra-violet photoemission spectroscopy (UPS). Although UPS is a mature technique from the early 1970s on, the angular distribution of the photoemitted electrons was thought to be too complex to be analysed . Recently angle resolved UPS (ARUPS) work on conjugated molecules both, in ordered thick films and chemisorbed monolayers, has shown that the angular (momentum) distribution of the photocurrent from orbital emissions can be simply understood. The approach, based on the assumption of a plane wave final state is becoming known as orbital tomography. Here we will demonstrate, with selected examples of pentacene (5A) and sexiphenyl (6P), the potential of orbital tomography. First it will be shown how the full angular distribution of the photocurrent (momentum map) from a specific orbital is related to the real space orbital by a Fourier transform. Examples of the reconstruction of 5A orbitals will be given and the procedure for recovering the lost phase information will be outlined. We then move to examples of sexiphenyl where we interrogate the original band maps of thick sexiphenyl in the light of our understanding of orbital tomography that has developed since then. With comparison to theoretical simulations of the molecular band maps, the molecular conformation and orientation will be concluded. New results for the sexiphenyl monolayer on Al(1 1 0) will then be presented. From the band maps it will be concluded that the molecule is planarised and adopts a tilted geometry. Finally the momentum maps down to HOMO-11 will be analysed and real space orbitals reconstructed.
分子的前沿轨道是其化学、光学和电子性质的主要决定因素。可以说,研究(已填充的)前沿轨道最直接的方法是紫外光电子能谱(UPS)。尽管自20世纪70年代初以来UPS就是一项成熟的技术,但人们认为光发射电子的角分布过于复杂,难以分析。最近,针对共轭分子在有序厚膜和化学吸附单分子层中的角分辨UPS(ARUPS)研究表明,来自轨道发射的光电流的角(动量)分布可以得到简单的理解。基于平面波末态假设的方法正逐渐被称为轨道断层扫描。在这里,我们将以并五苯(5A)和六苯基(6P)的选定例子来展示轨道断层扫描的潜力。首先将展示来自特定轨道的光电流的全角分布(动量图)如何通过傅里叶变换与实空间轨道相关。将给出并五苯轨道重建的例子,并概述恢复丢失相位信息的过程。然后我们转向六苯基的例子,根据我们此后发展起来的对轨道断层扫描的理解来审视厚六苯基的原始能带图。通过与分子能带图的理论模拟进行比较,将得出分子的构象和取向。然后将展示铝(1 1 0)上六苯基单分子层的新结果。从能带图中将得出分子被平面化并采用倾斜几何结构的结论。最后,将分析直至HOMO - 11的动量图并重建实空间轨道。