Institute of Physics, Karl-Franzens University Graz, 8010 Graz, Austria.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):605-10. doi: 10.1073/pnas.1315716110. Epub 2013 Dec 16.
The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust.
物质的量子力学描述的基础是电子波函数。对于原子和分子,它们的空间分布和相位被称为轨道。尽管轨道是非常强大的概念,但在实验中,只有电子密度和能级是直接可观测的。无论轨道是通过扫描探针实验在实空间中观察,还是通过光电子发射在倒空间中观察,轨道的相位信息都会丢失。在这里,我们表明,通过迭代过程,可以将分子轨道的角分辨光电子发射的实验动量图转换为实空间轨道,同时还恢复了丢失的相位信息。这通过对吸附在银上的分子并五苯(C22H14)和苝-3,4,9,10-四羧酸二酐(C24H8O6)的多个轨道的图像进行了演示,这些图像与从头算计算非常吻合。该过程不需要轨道的先验知识,并且被证明简单且稳健。