Universität Würzburg, Experimentelle Physik VII and Röntgen Research Center for Complex Material Systems RCCM, 97074 Würzburg, Germany.
1] Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich, Germany [2] Sincrotrone Trieste, NanoESCA beamline, in Area Science Park, Basovizza, Trieste 34149, Italy.
Nat Commun. 2014 Jun 9;5:4156. doi: 10.1038/ncomms5156.
Several experimental methods allow measuring the spatial probability density of electrons in atoms, molecules and solids, that is, the absolute square of the respective single-particle wave function. But it is an intrinsic problem of the measurement process that the information about the phase is generally lost during the experiment. The symmetry of this phase, however, is a crucial parameter for the knowledge of the full orbital information in real space. Here, we report on a key experiment that demonstrates that the phase symmetry can be derived from a strictly experimental approach from the circular dichroism in the angular distribution of photoelectrons. In combination with the electron density derived from the same experiment, the full quantum mechanical wave function can thus be determined experimentally.
几种实验方法可以测量原子、分子和固体中的电子的空间概率密度,即各自单粒子波函数的绝对值平方。但是,在测量过程中,相位信息通常会丢失,这是一个内在的问题。然而,相位的对称性对于了解真实空间中完整轨道信息是一个关键参数。在这里,我们报告了一个关键实验,该实验表明,相位对称性可以从光电电子角分布中的圆二色性的严格实验方法中得出。结合从同一实验中得出的电子密度,因此可以通过实验确定完整的量子力学波函数。