Suppr超能文献

相似文献

1
Ultrafast nanometric imaging of energy flow within and between single carbon dots.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2023083118. Epub 2021 Mar 8.
3
Orbital and charge-resolved polaron states in CdSe dots and rods probed by scanning tunneling spectroscopy.
Phys Rev Lett. 2009 May 15;102(19):196401. doi: 10.1103/PhysRevLett.102.196401. Epub 2009 May 12.
4
Unraveling the Fluorescence Mechanism of Carbon Dots with -Single-Particle Resolution.
ACS Nano. 2020 May 26;14(5):6127-6137. doi: 10.1021/acsnano.0c01924. Epub 2020 Apr 28.
5
Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.
Acc Chem Res. 2016 Jan 19;49(1):138-45. doi: 10.1021/acs.accounts.5b00361. Epub 2015 Dec 7.
6
Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
Acc Chem Res. 2009 Dec 21;42(12):2005-16. doi: 10.1021/ar900157s.
7
8
Orientation-dependent imaging of electronically excited quantum dots.
J Chem Phys. 2018 Feb 14;148(6):064701. doi: 10.1063/1.5012784.
9
Imaging Excited Orbitals of Quantum Dots: Experiment and Electronic Structure Theory.
J Am Chem Soc. 2015 Nov 25;137(46):14743-50. doi: 10.1021/jacs.5b09272. Epub 2015 Nov 13.
10
State-Resolved Metal Nanoparticle Dynamics Viewed through the Combined Lenses of Ultrafast and Magneto-optical Spectroscopies.
Acc Chem Res. 2018 Jun 19;51(6):1433-1442. doi: 10.1021/acs.accounts.8b00096. Epub 2018 May 8.

引用本文的文献

1
Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure.
Chem Sci. 2025 Feb 14;16(10):4195-4212. doi: 10.1039/d4sc05843g. eCollection 2025 Mar 5.
3
Breaking the size limitation of nonadiabatic molecular dynamics in condensed matter systems with local descriptor machine learning.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2403497121. doi: 10.1073/pnas.2403497121. Epub 2024 Aug 30.
4
Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy.
J Phys Chem C Nanomater Interfaces. 2023 Jul 24;127(30):14557-14586. doi: 10.1021/acs.jpcc.3c02091. eCollection 2023 Aug 3.
5
Activating One/Two-Photon Excited Red Fluorescence on Carbon Dots: Emerging n→π Photon Transition Induced by Amino Protonation.
Adv Sci (Weinh). 2023 Apr;10(11):e2207566. doi: 10.1002/advs.202207566. Epub 2023 Feb 5.

本文引用的文献

1
Unraveling the Fluorescence Mechanism of Carbon Dots with -Single-Particle Resolution.
ACS Nano. 2020 May 26;14(5):6127-6137. doi: 10.1021/acsnano.0c01924. Epub 2020 Apr 28.
2
Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities.
Research (Wash D C). 2019 Dec 2;2019:4641739. doi: 10.34133/2019/4641739. eCollection 2019.
3
Future Perspectives and Review on Organic Carbon Dots in Electronic Applications.
ACS Nano. 2019 Jun 25;13(6):6224-6255. doi: 10.1021/acsnano.9b00688. Epub 2019 Jun 4.
4
Imaging of Carbon Nanotube Electronic States Polarized by the Field of an Excited Quantum Dot.
ACS Nano. 2019 Feb 26;13(2):1012-1018. doi: 10.1021/acsnano.8b06806. Epub 2019 Jan 29.
5
Orientation-dependent imaging of electronically excited quantum dots.
J Chem Phys. 2018 Feb 14;148(6):064701. doi: 10.1063/1.5012784.
7
Macromolecularly "Caged" Carbon Nanoparticles for Intracellular Trafficking via Switchable Photoluminescence.
J Am Chem Soc. 2017 Feb 8;139(5):1746-1749. doi: 10.1021/jacs.6b11595. Epub 2017 Jan 27.
8
Atomic electron tomography: 3D structures without crystals.
Science. 2016 Sep 23;353(6306). doi: 10.1126/science.aaf2157.
9
Orbital tomography: Molecular band maps, momentum maps and the imaging of real space orbitals of adsorbed molecules.
J Electron Spectros Relat Phenomena. 2015 Oct 1;204(Pt A):92-101. doi: 10.1016/j.elspec.2015.04.023.
10
Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism.
ACS Nano. 2016 Jan 26;10(1):484-91. doi: 10.1021/acsnano.5b05406. Epub 2015 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验