Suppr超能文献

使用高斯混合模型的非刚性图像配准

Non-Rigid Image Registration Using Gaussian Mixture Models.

作者信息

Somayajula Sangeetha, Joshi Anand A, Leahy Richard M

机构信息

Dept. of Informatics IT, Merck Research Laboratories, Boston MA.

Signal and Image Processing Institute, University of Southern California, Los Angeles CA.

出版信息

Biomed Image Registration. 2012;7359:286-295. doi: 10.1007/978-3-642-31340-0_30.

Abstract

Non-rigid mutual information (MI) based image registration is prone to converge to local optima due to Parzen or histogram based density estimation used in conjunction with estimation of a high dimensional deformation field. We describe an approach for non-rigid registration that uses the log-likelihood of the target image given the deformed template as a similarity metric, wherein the distribution is modeled using a Gaussian mixture model (GMM). Using GMMs reduces the density estimation step to that of estimating the parameters of the GMM, thus being more computationally efficient and requiring fewer number of samples for accurate estimation. We compare the performance of our approach (GMM-Cond) with that of MI with Parzen density estimation (Parzen-MI), on inter-subject and inter-modality (CT to MR) mouse images. Mouse image registration is challenging because of the presence of a rigid skeleton within non-rigid soft tissue, and due to major shape and posture variability in inter-subject registration. The results show that GMM-Cond has higher registration accuracy than Parzen-MI in terms of sum of squared difference in intensity and dice coefficients of overall and skeletal overlap. The GMM-Cond approach is a general approach that can be considered a semi-parametric approximation to MI based registration, and can be used an alternative to MI for high dimensional non-rigid registration.

摘要

基于非刚性互信息(MI)的图像配准容易因与高维变形场估计结合使用的基于Parzen或直方图的密度估计而收敛到局部最优解。我们描述了一种非刚性配准方法,该方法使用给定变形模板的目标图像的对数似然作为相似性度量,其中分布使用高斯混合模型(GMM)进行建模。使用GMM将密度估计步骤简化为估计GMM的参数,从而在计算上更高效,并且需要更少的样本数量进行准确估计。我们在受试者间和模态间(CT到MR)小鼠图像上比较了我们的方法(GMM-Cond)与具有Parzen密度估计的MI(Parzen-MI)的性能。小鼠图像配准具有挑战性,因为在非刚性软组织内存在刚性骨骼,并且由于受试者间配准中存在主要的形状和姿势变异性。结果表明,在强度平方差总和以及整体和骨骼重叠的骰子系数方面,GMM-Cond比Parzen-MI具有更高的配准精度。GMM-Cond方法是一种通用方法,可以被视为基于MI的配准的半参数近似,并且可以用作高维非刚性配准中MI的替代方法。

相似文献

1
Non-Rigid Image Registration Using Gaussian Mixture Models.使用高斯混合模型的非刚性图像配准
Biomed Image Registration. 2012;7359:286-295. doi: 10.1007/978-3-642-31340-0_30.

本文引用的文献

5
Articulated rigid registration for serial lower-limb mouse imaging.用于连续下肢小鼠成像的关节式刚性配准
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):919-26. doi: 10.1007/11566489_113.
6
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
7
Unified segmentation.统一分割
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.
8
Non-rigid image registration: theory and practice.非刚性图像配准:理论与实践
Br J Radiol. 2004;77 Spec No 2:S140-53. doi: 10.1259/bjr/25329214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验