College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China.
IFW Dresden , P.O. Box 270116, 01069 Dresden, Germany.
ACS Nano. 2016 Feb 23;10(2):2063-70. doi: 10.1021/acsnano.5b06254. Epub 2016 Jan 15.
Improved properties arise in transition metal dichalcogenide (TMDC) materials when they are stacked onto insulating hexagonal boron nitride (h-BN). Therefore, the scalable fabrication of TMDCs/h-BN heterostructures by direct chemical vapor deposition (CVD) growth is highly desirable. Unfortunately, to achieve this experimentally is challenging. Ideal substrates for h-BN growth, such as Ni, become sulfides during the synthesis process. This leads to the decomposition of the pregrown h-BN film, and thus no TMDCs/h-BN heterostructure forms. Here, we report a thoroughly direct CVD approach to obtain TMDCs/h-BN vertical heterostructures without any intermediate transfer steps. This is attributed to the use of a nickel-based alloy with excellent sulfide-resistant properties and a high catalytic activity for h-BN growth. The strategy enables the direct growth of single-crystal MoS2 grains of up to 200 μm(2) on h-BN, which is approximately 1 order of magnitude larger than that in previous reports. The direct band gap of our grown single-layer MoS2 on h-BN is 1.85 eV, which is quite close to that for free-standing exfoliated equivalents. This strategy is not limited to MoS2-based heterostructures and so allows the fabrication of a variety of TMDCs/h-BN heterostructures, suggesting the technique has promise for nanoelectronics and optoelectronic applications.
当过渡金属二卤化物 (TMDC) 材料堆叠在绝缘六方氮化硼 (h-BN) 上时,其性能会得到改善。因此,通过直接化学气相沉积 (CVD) 生长可大规模制造 TMDCs/h-BN 异质结构,这是非常理想的。然而,从实验上实现这一点具有挑战性。h-BN 生长的理想衬底,如 Ni,在合成过程中会变成硫化物。这导致预生长的 h-BN 薄膜分解,因此无法形成 TMDCs/h-BN 异质结构。在这里,我们报告了一种彻底的直接 CVD 方法,可在无需任何中间转移步骤的情况下获得 TMDCs/h-BN 垂直异质结构。这归因于使用具有出色抗硫化性能和高 h-BN 生长催化活性的镍基合金。该策略能够直接在 h-BN 上生长高达 200 μm² 的单晶 MoS2 颗粒,这大约比以前的报道大一个数量级。我们在 h-BN 上生长的单层 MoS2 的直接带隙为 1.85 eV,与自由剥离的等效物非常接近。该策略不仅限于基于 MoS2 的异质结构,因此可以制造各种 TMDCs/h-BN 异质结构,这表明该技术在纳米电子学和光电子学应用中具有很大的潜力。