Suppr超能文献

二维材料的化学气相沉积:建模、模拟和机器学习研究综述

Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies.

作者信息

Bhowmik Sayan, Govind Rajan Ananth

机构信息

Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.

出版信息

iScience. 2022 Jan 29;25(3):103832. doi: 10.1016/j.isci.2022.103832. eCollection 2022 Mar 18.

Abstract

Chemical vapor deposition (CVD) is extensively used to produce large-area two-dimensional (2D) materials. Current research is aimed at understanding mechanisms underlying the nucleation and growth of various 2D materials, such as graphene, hexagonal boron nitride (hBN), and transition metal dichalcogenides (e.g., MoS/WSe). Herein, we survey the vast literature regarding modeling and simulation of the CVD growth of 2D materials and their heterostructures. We also focus on newer materials, such as silicene, phosphorene, and borophene. We discuss how density functional theory, kinetic Monte Carlo, and reactive molecular dynamics simulations can shed light on the thermodynamics and kinetics of vapor-phase synthesis. We explain how machine learning can be used to develop insights into growth mechanisms and outcomes, as well as outline the open knowledge gaps in the literature. Our work provides consolidated theoretical insights into the CVD growth of 2D materials and presents opportunities for further understanding and improving such processes.

摘要

化学气相沉积(CVD)被广泛用于制备大面积二维(2D)材料。当前的研究旨在了解各种二维材料(如石墨烯、六方氮化硼(hBN)和过渡金属二硫属化物(如MoS/WSe))成核和生长的潜在机制。在此,我们综述了关于二维材料及其异质结构CVD生长的建模与模拟的大量文献。我们还关注诸如硅烯、磷烯和硼烯等新型材料。我们讨论了密度泛函理论、动力学蒙特卡罗和反应分子动力学模拟如何能够揭示气相合成的热力学和动力学。我们解释了机器学习如何用于深入了解生长机制和结果,并概述了文献中存在的知识空白。我们的工作为二维材料的CVD生长提供了综合的理论见解,并为进一步理解和改进此类过程提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4c6/8857588/559b8011dcf1/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验