Suppr超能文献

基于联合分布熵方法的短生理序列耦合检测

Detection of Coupling in Short Physiological Series by a Joint Distribution Entropy Method.

作者信息

Li Peng, Li Ke, Liu Chengyu, Zheng Dingchang, Li Zong-Ming, Liu Changchun

出版信息

IEEE Trans Biomed Eng. 2016 Nov;63(11):2231-2242. doi: 10.1109/TBME.2016.2515543. Epub 2016 Jan 7.

Abstract

OBJECTIVE

In this study, we developed a joint distribution entropy (JDistEn) method to robustly estimate the coupling in short physiological series.

METHODS

The JDistEn method is derived from a joint distance matrix which is constructed from a combination of the distance matrix corresponding to each individual data channel using a geometric mean calculation. A coupled Rössler system and a coupled dual-kinetics neural mass model were used to examine how well JDistEn performed, specifically, its sensitivity for detecting weak coupling, its consistency in gauging coupling strength, and its reliability in processing input of decreased data length. Performance of JDistEn in estimating physiological coupling was further examined with bivariate electroencephalography data from rats and RR interval and diastolic time interval series from human beings. Cross-sample entropy (XSampEn), cross-conditional entropy (XCE), and Shannon entropy of diagonal lines in the joint recurrence plots (JENT) were applied for purposes of comparison.

RESULTS

Simulation results suggest that JDistEn showed markedly higher sensitivity than XSampEn, XCE, and JENT for dynamics in weak coupling, although as the simulation models were more intensively coupled, JDistEn performance was comparable to the three others. In addition, this improved sensitivity was much more pronounced for short datasets. Experimental results further confirmed that JDistEn outperformed XSampEn, XCE, and JENT for detecting weak coupling, especially for short physiological data.

CONCLUSION

This study suggested that our proposed JDistEn could be useful for continuous and even real-time coupling analysis for physiological signals in clinical practice.

摘要

目的

在本研究中,我们开发了一种联合分布熵(JDistEn)方法,以稳健地估计短生理序列中的耦合。

方法

JDistEn方法源自一个联合距离矩阵,该矩阵由使用几何平均计算的每个单独数据通道对应的距离矩阵组合构建而成。使用耦合的罗斯勒系统和耦合的双动力学神经质量模型来检验JDistEn的性能,具体包括其检测弱耦合的灵敏度、测量耦合强度的一致性以及处理数据长度减少的输入时的可靠性。利用大鼠的双变量脑电图数据以及人类的RR间期和舒张期时间间期序列,进一步检验JDistEn在估计生理耦合方面的性能。为作比较,应用了交叉样本熵(XSampEn)、交叉条件熵(XCE)以及联合递归图(JENT)中对角线的香农熵。

结果

模拟结果表明,对于弱耦合动力学,JDistEn的灵敏度显著高于XSampEn、XCE和JENT,不过随着模拟模型耦合程度的增加,JDistEn的性能与其他三者相当。此外,这种提高的灵敏度在短数据集上更为明显。实验结果进一步证实,在检测弱耦合方面,尤其是对于短生理数据,JDistEn优于XSampEn、XCE和JENT。

结论

本研究表明,我们提出的JDistEn可用于临床实践中对生理信号进行连续甚至实时的耦合分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验