Lin Yen Ting, Galla Tobias
Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.
J R Soc Interface. 2016 Jan;13(114):20150772. doi: 10.1098/rsif.2015.0772.
The dynamics of short-lived mRNA results in bursts of protein production in gene regulatory networks. We investigate the propagation of bursting noise between different levels of mathematical modelling and demonstrate that conventional approaches based on diffusion approximations can fail to capture bursting noise. An alternative coarse-grained model, the so-called piecewise deterministic Markov process (PDMP), is seen to outperform the diffusion approximation in biologically relevant parameter regimes. We provide a systematic embedding of the PDMP model into the landscape of existing approaches, and we present analytical methods to calculate its stationary distribution and switching frequencies.
短寿命信使核糖核酸(mRNA)的动力学特性导致基因调控网络中蛋白质产生的爆发。我们研究了爆发噪声在不同层次数学建模之间的传播,并证明基于扩散近似的传统方法可能无法捕捉到爆发噪声。另一种粗粒化模型,即所谓的分段确定性马尔可夫过程(PDMP),在生物学相关参数范围内表现优于扩散近似。我们将PDMP模型系统地嵌入到现有方法体系中,并提出计算其平稳分布和切换频率的解析方法。