Suppr超能文献

基因表达动力学中的爆发噪声:微观模型与介观模型的关联

Bursting noise in gene expression dynamics: linking microscopic and mesoscopic models.

作者信息

Lin Yen Ting, Galla Tobias

机构信息

Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK

Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.

出版信息

J R Soc Interface. 2016 Jan;13(114):20150772. doi: 10.1098/rsif.2015.0772.

Abstract

The dynamics of short-lived mRNA results in bursts of protein production in gene regulatory networks. We investigate the propagation of bursting noise between different levels of mathematical modelling and demonstrate that conventional approaches based on diffusion approximations can fail to capture bursting noise. An alternative coarse-grained model, the so-called piecewise deterministic Markov process (PDMP), is seen to outperform the diffusion approximation in biologically relevant parameter regimes. We provide a systematic embedding of the PDMP model into the landscape of existing approaches, and we present analytical methods to calculate its stationary distribution and switching frequencies.

摘要

短寿命信使核糖核酸(mRNA)的动力学特性导致基因调控网络中蛋白质产生的爆发。我们研究了爆发噪声在不同层次数学建模之间的传播,并证明基于扩散近似的传统方法可能无法捕捉到爆发噪声。另一种粗粒化模型,即所谓的分段确定性马尔可夫过程(PDMP),在生物学相关参数范围内表现优于扩散近似。我们将PDMP模型系统地嵌入到现有方法体系中,并提出计算其平稳分布和切换频率的解析方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bf4/4759790/a2b4facaefd0/rsif20150772-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验