Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland.
Mol Biol Evol. 2020 Jan 1;37(1):58-70. doi: 10.1093/molbev/msz199.
Bacteria can resist antibiotics by expressing enzymes that remove or deactivate drug molecules. Here, we study the effects of gene expression stochasticity on efflux and enzymatic resistance. We construct an agent-based model that stochastically simulates multiple biochemical processes in the cell and we observe the growth and survival dynamics of the cell population. Resistance-enhancing mutations are introduced by varying parameters that control the enzyme expression or efficacy. We find that stochastic gene expression can cause complex dynamics in terms of survival and extinction for these mutants. Regulatory mutations, which augment the frequency and duration of resistance gene transcription, can provide limited resistance by increasing mean expression. Structural mutations, which modify the enzyme or efflux efficacy, provide most resistance by improving the binding affinity of the resistance protein to the antibiotic; increasing the enzyme's catalytic rate alone may contribute to resistance if drug binding is not rate limiting. Overall, we identify conditions where regulatory mutations are selected over structural mutations, and vice versa. Our findings show that stochastic gene expression is a key factor underlying efflux and enzymatic resistances and should be taken into consideration in future antibiotic research.
细菌可以通过表达能够去除或失活药物分子的酶来抵抗抗生素。在这里,我们研究了基因表达随机性对外排和酶抗性的影响。我们构建了一个基于代理的模型,该模型可以随机模拟细胞中的多个生化过程,并观察细胞群体的生长和存活动态。通过改变控制酶表达或功效的参数来引入增强抗性的突变。我们发现,随机基因表达可能会导致这些突变体在存活和灭绝方面出现复杂的动态。增强抗性基因转录的频率和持续时间的调节突变可以通过增加平均表达来提供有限的抗性。结构突变,即修饰酶或外排功效,通过提高抗性蛋白与抗生素的结合亲和力提供最大的抗性;如果药物结合不是限速步骤,则仅提高酶的催化速率也可能有助于产生抗性。总的来说,我们确定了调节突变被选择超过结构突变的条件,反之亦然。我们的研究结果表明,随机基因表达是外排和酶抗性的关键因素,在未来的抗生素研究中应予以考虑。