Suppr超能文献

影像转录:过去、现在与未来。

Imaging Transcription: Past, Present, and Future.

作者信息

Coleman Robert A, Liu Zhe, Darzacq Xavier, Tjian Robert, Singer Robert H, Lionnet Timothée

机构信息

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461.

HHMI Janelia Research Campus, Ashburn, Virginia 20147.

出版信息

Cold Spring Harb Symp Quant Biol. 2015;80:1-8. doi: 10.1101/sqb.2015.80.027201. Epub 2016 Jan 13.

Abstract

Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single-molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation.

摘要

转录作为基因表达的第一步,在高等真核生物中受到精确调控,以确保正确的发育和体内平衡。传统的生化、遗传和基因组方法已成功识别出调控转录的因子、调控序列和潜在途径。然而,它们通常只能提供转录调控中高度动态、随机生化过程的快照或群体平均值。因此,单分子活细胞成像已成为一种能够克服这些局限性的补充方法。通过在分子事件于其天然环境中发生时实时观察其序列,成像能够得出因果关系和定量动力学,从而构建转录预测模型。荧光成像技术的不断进步带来了新的显微镜和标记技术,现在已经能够在活细胞和动物中以单分子分辨率可视化和量化转录过程。在这里,我们概述转录成像技术的发展历程和现状。我们讨论了它们揭示的一些重要概念,并介绍了可能解决转录调控中长期存在问题的未来发展方向。

相似文献

1
Imaging Transcription: Past, Present, and Future.
Cold Spring Harb Symp Quant Biol. 2015;80:1-8. doi: 10.1101/sqb.2015.80.027201. Epub 2016 Jan 13.
2
RNA voyeurism: A coming of age story.
Methods. 2016 Apr 1;98:10-17. doi: 10.1016/j.ymeth.2015.11.024. Epub 2015 Nov 27.
3
Combining protein and mRNA quantification to decipher transcriptional regulation.
Nat Methods. 2015 Aug;12(8):739-42. doi: 10.1038/nmeth.3446. Epub 2015 Jun 22.
4
Stochastic models of transcription: from single molecules to single cells.
Methods. 2013 Jul 15;62(1):13-25. doi: 10.1016/j.ymeth.2013.03.026. Epub 2013 Apr 1.
5
6
Single-Cell and Single-Molecule Analysis of Gene Expression Regulation.
Annu Rev Genet. 2016 Nov 23;50:267-291. doi: 10.1146/annurev-genet-120215-034854.
7
Techniques for Single-Molecule mRNA Imaging in Living Cells.
Adv Exp Med Biol. 2017;978:425-441. doi: 10.1007/978-3-319-53889-1_22.
9
Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook.
J Mol Biol. 2017 Jan 6;429(1):14-31. doi: 10.1016/j.jmb.2016.11.007. Epub 2016 Nov 16.
10
Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression.
Annu Rev Biochem. 2020 Jun 20;89:159-187. doi: 10.1146/annurev-biochem-011520-104955. Epub 2020 Mar 16.

引用本文的文献

1
NuclampFISH enables cell sorting based on nuclear RNA expression for chromatin analysis.
BMC Genomics. 2025 Jul 1;26(1):624. doi: 10.1186/s12864-025-11818-0.
2
Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals.
Chem Rev. 2024 Nov 27;124(22):12573-12660. doi: 10.1021/acs.chemrev.4c00293. Epub 2024 Nov 13.
3
Optogenetic dissection of transcriptional repression in a multicellular organism.
Nat Commun. 2024 Oct 26;15(1):9263. doi: 10.1038/s41467-024-53539-0.
5
Recent Advances in Single-Molecule Tracking and Imaging Techniques.
Annu Rev Anal Chem (Palo Alto Calif). 2023 Jun 14;16(1):253-284. doi: 10.1146/annurev-anchem-091922-073057.
7
Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila.
Nat Commun. 2022 Sep 14;13(1):5375. doi: 10.1038/s41467-022-32973-y.
9
Bromodomains regulate dynamic targeting of the PBAF chromatin-remodeling complex to chromatin hubs.
Biophys J. 2022 May 3;121(9):1738-1752. doi: 10.1016/j.bpj.2022.03.027. Epub 2022 Mar 30.
10
Spatio-temporal mRNA tracking in the early zebrafish embryo.
Nat Commun. 2021 Jun 7;12(1):3358. doi: 10.1038/s41467-021-23834-1.

本文引用的文献

1
Studying lineage decision-making in vitro: emerging concepts and novel tools.
Annu Rev Cell Dev Biol. 2015;31:317-45. doi: 10.1146/annurev-cellbio-100814-125300.
2
Dynamics of CRISPR-Cas9 genome interrogation in living cells.
Science. 2015 Nov 13;350(6262):823-6. doi: 10.1126/science.aac6572.
3
Stable Chromosome Condensation Revealed by Chromosome Conformation Capture.
Cell. 2015 Nov 5;163(4):934-46. doi: 10.1016/j.cell.2015.10.026.
4
Combinatorial gene regulation by modulation of relative pulse timing.
Nature. 2015 Nov 5;527(7576):54-8. doi: 10.1038/nature15710. Epub 2015 Oct 14.
5
Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping.
Cell. 2015 Aug 13;162(4):911-23. doi: 10.1016/j.cell.2015.07.035.
6
Lighting Up Genes in Single Cells at Scale.
Cell. 2015 Aug 13;162(4):705-7. doi: 10.1016/j.cell.2015.07.052.
7
Inferring transient particle transport dynamics in live cells.
Nat Methods. 2015 Sep;12(9):838-40. doi: 10.1038/nmeth.3483. Epub 2015 Jul 20.
9
Simultaneous live imaging of the transcription and nuclear position of specific genes.
Nucleic Acids Res. 2015 Oct 30;43(19):e127. doi: 10.1093/nar/gkv624. Epub 2015 Jun 19.
10
Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.
Nat Commun. 2015 Jun 15;6:7276. doi: 10.1038/ncomms8276.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验