Suppr超能文献

在活真核细胞中对 DNA 和 RNA 的成像以揭示基因表达的时空动态。

Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression.

机构信息

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; email:

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.

出版信息

Annu Rev Biochem. 2020 Jun 20;89:159-187. doi: 10.1146/annurev-biochem-011520-104955. Epub 2020 Mar 16.

Abstract

This review focuses on imaging DNA and single RNA molecules in living cells to define eukaryotic functional organization and dynamic processes. The latest advances in technologies to visualize individual DNA loci and RNAs in real time are discussed. Single-molecule fluorescence microscopy provides the spatial and temporal resolution to reveal mechanisms regulating fundamental cell functions. Novel insights into the regulation of nuclear architecture, transcription, posttranscriptional RNA processing, and RNA localization provided by multicolor fluorescence microscopy are reviewed. A perspective on the future use of live imaging technologies and overcoming their current limitations is provided.

摘要

本文综述了在活细胞中成像 DNA 和单 RNA 分子以定义真核生物功能组织和动态过程的研究进展。本文讨论了实时可视化单个 DNA 基因座和 RNA 的最新技术进展。单分子荧光显微镜提供了时空分辨率,揭示了调节基本细胞功能的机制。多色荧光显微镜为核架构、转录、转录后 RNA 加工和 RNA 定位的调控提供了新的见解。本文还展望了活细胞成像技术的未来应用,并探讨了如何克服其当前的局限性。

相似文献

1
Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression.
Annu Rev Biochem. 2020 Jun 20;89:159-187. doi: 10.1146/annurev-biochem-011520-104955. Epub 2020 Mar 16.
2
Genome organization in the nucleus: From dynamic measurements to a functional model.
Methods. 2017 Jul 1;123:128-137. doi: 10.1016/j.ymeth.2017.01.008. Epub 2017 Feb 1.
4
Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization.
Methods. 2017 Jul 1;123:89-101. doi: 10.1016/j.ymeth.2017.01.010. Epub 2017 Feb 14.
5
From snapshots to moving pictures: new perspectives on nuclear organization.
Trends Cell Biol. 2001 Dec;11(12):519-25. doi: 10.1016/s0962-8924(01)02174-2.
6
Principles of nuclear organization.
Cell Biol Int Rep. 1990 Dec;14(12):1051-74. doi: 10.1016/0309-1651(90)90014-p.
7
[Imaging of mRNA nuclear export in a living cell].
Tanpakushitsu Kakusan Koso. 2003 Mar;48(4 Suppl):421-9.
8
Temporal and spatial regulation of mRNA export: Single particle RNA-imaging provides new tools and insights.
Bioessays. 2017 Feb;39(2). doi: 10.1002/bies.201600124. Epub 2017 Jan 4.
9
Visualizing chromatin dynamics in interphase nuclei.
Science. 2002 May 24;296(5572):1412-6. doi: 10.1126/science.1067703.
10
Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.
Methods. 2016 Apr 1;98:104-114. doi: 10.1016/j.ymeth.2016.01.006. Epub 2016 Jan 16.

引用本文的文献

1
High-resolution dynamic imaging of chromatin DNA communication using Oligo-LiveFISH.
Cell. 2025 Jun 12;188(12):3310-3328.e27. doi: 10.1016/j.cell.2025.03.032. Epub 2025 Apr 15.
3
Epigenetic modifications involving ncRNAs in digestive system cancers: focus on histone modification.
Clin Epigenetics. 2024 Nov 19;16(1):162. doi: 10.1186/s13148-024-01773-0.
4
Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals.
Chem Rev. 2024 Nov 27;124(22):12573-12660. doi: 10.1021/acs.chemrev.4c00293. Epub 2024 Nov 13.
5
Optogenetic dissection of transcriptional repression in a multicellular organism.
Nat Commun. 2024 Oct 26;15(1):9263. doi: 10.1038/s41467-024-53539-0.
6
MONITTR allows real-time imaging of transcription and endogenous proteins in C. elegans.
J Cell Biol. 2025 Jan 6;224(1). doi: 10.1083/jcb.202403198. Epub 2024 Oct 14.
8
Approaches to probe and perturb long noncoding RNA functions in diseases.
Curr Opin Genet Dev. 2024 Apr;85:102158. doi: 10.1016/j.gde.2024.102158. Epub 2024 Feb 26.
9
Real-time single-molecule imaging of transcriptional regulatory networks in living cells.
Nat Rev Genet. 2024 Apr;25(4):272-285. doi: 10.1038/s41576-023-00684-9. Epub 2024 Jan 9.
10
Translation Dynamics of Single mRNAs in Live Cells.
Annu Rev Biophys. 2024 Jul;53(1):65-85. doi: 10.1146/annurev-biophys-030822-034116. Epub 2024 Jun 28.

本文引用的文献

1
The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation.
Mol Cell. 2019 Oct 17;76(2):295-305. doi: 10.1016/j.molcel.2019.09.016. Epub 2019 Oct 8.
2
Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences.
Genes Dev. 2019 Dec 1;33(23-24):1619-1634. doi: 10.1101/gad.331520.119. Epub 2019 Oct 8.
3
Fast objective coupled planar illumination microscopy.
Nat Commun. 2019 Oct 2;10(1):4483. doi: 10.1038/s41467-019-12340-0.
4
Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging.
ACS Cent Sci. 2019 Sep 25;5(9):1602-1613. doi: 10.1021/acscentsci.9b00676. Epub 2019 Sep 5.
5
Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs.
Nat Biotechnol. 2019 Nov;37(11):1287-1293. doi: 10.1038/s41587-019-0249-1. Epub 2019 Sep 23.
6
RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether.
Cell. 2019 Sep 19;179(1):147-164.e20. doi: 10.1016/j.cell.2019.08.050.
7
Distinct Classes of Chromatin Loops Revealed by Deletion of an RNA-Binding Region in CTCF.
Mol Cell. 2019 Nov 7;76(3):395-411.e13. doi: 10.1016/j.molcel.2019.07.039. Epub 2019 Sep 12.
8
CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci.
Nucleic Acids Res. 2019 Nov 18;47(20):e131. doi: 10.1093/nar/gkz752.
9
CRISPR-mediated live imaging of genome editing and transcription.
Science. 2019 Sep 20;365(6459):1301-1305. doi: 10.1126/science.aax7852. Epub 2019 Sep 5.
10
Live imaging of mRNA using RNA-stabilized fluorogenic proteins.
Nat Methods. 2019 Sep;16(9):862-865. doi: 10.1038/s41592-019-0531-7. Epub 2019 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验