Suppr超能文献

关于因果建模方法应用的一些注意事项。

Some Cautions Concerning The Application Of Causal Modeling Methods.

出版信息

Multivariate Behav Res. 1983 Jan 1;18(1):115-26. doi: 10.1207/s15327906mbr1801_7.

Abstract

Literal acceptance of the results of fitting "causal" models to correlational data can lead to conclusions that are of questionable value. The long-established principles of scientific inference must still be applied. In particular, the possible influence of variables that are not observed must be considered; the well-known difference between correlation and causation is still relevant, even when variables are separated in time; the distinction between measured variables and their theoretical counterparts still exists; and ex post facto analyses are not tests of models. There seems to be some danger of overlooking these principles when complex computer programs are used to analyze. correlational data, even though these new methods provide great increases in the rigor with which correlational data can be analyzed.

摘要

对将“因果”模型拟合相关数据的结果的字面接受,可能会导致有疑问价值的结论。科学推理的既定原则仍然必须适用。特别是,必须考虑到未观察到的变量的可能影响;即使变量在时间上分开,相关性和因果关系之间的明显区别仍然相关;测量变量与其理论对应物之间的区别仍然存在;事后分析不是对模型的检验。当使用复杂的计算机程序来分析相关数据时,似乎存在忽视这些原则的危险,即使这些新方法为更严格地分析相关数据提供了极大的帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验