Suppr超能文献

多时间序列的因果推断:原理与问题。

Causal inference with multiple time series: principles and problems.

机构信息

Department of Quantitative Economics, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.

出版信息

Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110613. doi: 10.1098/rsta.2011.0613. Print 2013 Aug 28.

Abstract

I review the use of the concept of Granger causality for causal inference from time-series data. First, I give a theoretical justification by relating the concept to other theoretical causality measures. Second, I outline possible problems with spurious causality and approaches to tackle these problems. Finally, I sketch an identification algorithm that learns causal time-series structures in the presence of latent variables. The description of the algorithm is non-technical and thus accessible to applied scientists who are interested in adopting the method.

摘要

我回顾了格兰杰因果关系概念在时间序列数据因果推断中的应用。首先,我通过将该概念与其他理论因果度量联系起来,从理论上证明了其合理性。其次,我概述了虚假因果关系可能存在的问题以及解决这些问题的方法。最后,我概述了一种在存在潜在变量的情况下学习因果时间序列结构的识别算法。该算法的描述是非技术性的,因此对有兴趣采用该方法的应用科学家来说是可以理解的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验