Suppr超能文献

流行病学中的因果关系与因果推断

Causation and causal inference in epidemiology.

作者信息

Rothman Kenneth J, Greenland Sander

机构信息

Boston University Medical Center, Boston, MA, USA.

出版信息

Am J Public Health. 2005;95 Suppl 1:S144-50. doi: 10.2105/AJPH.2004.059204.

Abstract

Concepts of cause and causal inference are largely self-taught from early learning experiences. A model of causation that describes causes in terms of sufficient causes and their component causes illuminates important principles such as multi-causality, the dependence of the strength of component causes on the prevalence of complementary component causes, and interaction between component causes. Philosophers agree that causal propositions cannot be proved, and find flaws or practical limitations in all philosophies of causal inference. Hence, the role of logic, belief, and observation in evaluating causal propositions is not settled. Causal inference in epidemiology is better viewed as an exercise in measurement of an effect rather than as a criterion-guided process for deciding whether an effect is present or not.

摘要

因果及因果推断的概念在很大程度上是从早期学习经历中自学而来的。一种用充分病因及其组成病因来描述病因的因果关系模型,阐明了多因果关系、组成病因强度对互补性组成病因流行率的依赖性以及组成病因之间的相互作用等重要原则。哲学家们一致认为,因果命题无法得到证明,并且在所有因果推断哲学中都发现了缺陷或实际局限性。因此,逻辑、信念和观察在评估因果命题中的作用尚无定论。流行病学中的因果推断,最好被视为对一种效应的测量活动,而不是一个由标准引导的、用于判定是否存在效应的过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验