Suppr超能文献

流行病学中的因果关系与因果推断

Causation and causal inference in epidemiology.

作者信息

Rothman Kenneth J, Greenland Sander

机构信息

Boston University Medical Center, Boston, MA, USA.

出版信息

Am J Public Health. 2005;95 Suppl 1:S144-50. doi: 10.2105/AJPH.2004.059204.

Abstract

Concepts of cause and causal inference are largely self-taught from early learning experiences. A model of causation that describes causes in terms of sufficient causes and their component causes illuminates important principles such as multi-causality, the dependence of the strength of component causes on the prevalence of complementary component causes, and interaction between component causes. Philosophers agree that causal propositions cannot be proved, and find flaws or practical limitations in all philosophies of causal inference. Hence, the role of logic, belief, and observation in evaluating causal propositions is not settled. Causal inference in epidemiology is better viewed as an exercise in measurement of an effect rather than as a criterion-guided process for deciding whether an effect is present or not.

摘要

因果及因果推断的概念在很大程度上是从早期学习经历中自学而来的。一种用充分病因及其组成病因来描述病因的因果关系模型,阐明了多因果关系、组成病因强度对互补性组成病因流行率的依赖性以及组成病因之间的相互作用等重要原则。哲学家们一致认为,因果命题无法得到证明,并且在所有因果推断哲学中都发现了缺陷或实际局限性。因此,逻辑、信念和观察在评估因果命题中的作用尚无定论。流行病学中的因果推断,最好被视为对一种效应的测量活动,而不是一个由标准引导的、用于判定是否存在效应的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验