Applied Physics Research Group, Physics Department, Vrije Universiteit Brussel, Brussels, Belgium.
Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel - Université Libre de Bruxelles, Brussels, Belgium.
PLoS One. 2019 May 2;14(5):e0216089. doi: 10.1371/journal.pone.0216089. eCollection 2019.
We theoretically study the effects of non-monotonic response curves in genetic auto-regulation by exploring the possible dynamical behaviors for such systems. Our motivation is twofold: we aim at conceiving the simplest genetic circuits for synthetic biology and at understanding the natural auto-regulation of the LrpB protein of the Sulfolobus solfataricus archaeon which exhibits non-monotonicity. We analyzed three toy models, based on mass-action kinetics, with increasing complexity and sought for oscillations and (fast) bistable switching. We performed large parameter scans and sensitivity analyses, and quantified the quality of the oscillators and switches by computing relative volumes in parameter space reproducing the sought dynamical behavior. All single gene systems need finely tuned parameters in order to oscillate, but bistable switches are more robust against parameter changes. We expected non-monotonic switches to be faster than monotonic ones, however solutions combining both auto-activation and repression in the physiological range to obtain fast switches are scarce. Our analysis shows that the Ss-LrpB system can not provide a bistable switch and that robust oscillations are unlikely. Gillespie simulations suggest that the function of the natural Ss-LrpB system is sensing via a spiking behavior, which is in line with the fact that this protein has a metabolic regulatory function and binds to a ligand.
我们通过探索此类系统的可能动态行为,从理论上研究遗传自动调节中非单调响应曲线的影响。我们的动机有两个:我们旨在设计用于合成生物学的最简单的遗传电路,并了解 Sulfolobus solfataricus 古菌的 LrpB 蛋白的自然自动调节,该蛋白表现出非单调。我们基于质量作用动力学分析了三个玩具模型,这些模型的复杂性逐渐增加,并寻求振荡和(快速)双稳态切换。我们进行了大量参数扫描和敏感性分析,并通过计算再现所需动态行为的参数空间中的相对体积,对振荡器和开关的质量进行了量化。所有单基因系统都需要精细调整参数才能振荡,但双稳态开关对参数变化的鲁棒性更强。我们预计非单调开关会比单调开关更快,但在生理范围内结合自动激活和抑制来获得快速开关的解决方案却很少。我们的分析表明,Ss-LrpB 系统不能提供双稳态开关,也不太可能产生稳健的振荡。吉布斯模拟表明,天然 Ss-LrpB 系统的功能是通过尖峰行为进行感应,这与该蛋白质具有代谢调节功能并与配体结合的事实相符。