Feijoo David, Zezyulin Dmitry A, Konotop Vladimir V
Área de Óptica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, Ourense ES-32004, Spain.
Centro de Física Teórica e Computacional and Departamento de Física, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C8, Lisboa P-1749-016, Portugal.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062909. doi: 10.1103/PhysRevE.92.062909. Epub 2015 Dec 9.
We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT-symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT-symmetric cases. Interactions and collisions between the conservative and PT-symmetric solitons are briefly investigated, as well.
我们分析了一个由线性项耦合且具有三次-五次(聚焦-散焦)非线性的三维非线性薛定谔方程组。我们考虑该模型的两个版本:保守型和宇称-时间(PT)对称型。这些模型描述了三芯非线性光波导,在PT对称情况下具有平衡的增益和损耗。我们得到了孤子解族并讨论了它们的稳定性。后者的研究通过线性稳定性分析进行,并通过对方程演化系统的直接数值模拟进行验证。在保守型和PT对称型情况下都发现了稳定孤子。我们还简要研究了保守型和PT对称型孤子之间的相互作用和碰撞。