Wang Han, Shi Yi, Song Jian, Qi Jianxun, Lu Guangwen, Yan Jinghua, Gao George F
CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early-warning, Chinese Academy of Sciences, Beijing 100101, China; Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen 518112, China.
Cell. 2016 Jan 14;164(1-2):258-268. doi: 10.1016/j.cell.2015.12.044.
Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry.
包括埃博拉病毒和马尔堡病毒在内的丝状病毒可导致人类和灵长类动物患上致命的出血热。了解这些病毒如何进入宿主细胞有助于开发有效的治疗方法。一种内体蛋白,即尼曼-皮克病C1型(NPC1),已被确定为这一过程中必需的进入受体,并且将病毒糖蛋白(GP)引发至具有融合能力的状态是NPC1结合的前提条件。在此,我们确定了埃博拉病毒引发的GP(GPcl)与NPC1的结构域C(NPC1-C)结合的晶体结构,分辨率为2.3埃。NPC1-C利用两个突出的环与GPcl头部的一个疏水腔结合。在酶切和NPC1-C结合后,GPcl的构象变化进一步影响内部融合环的状态,从而触发膜融合。因此,我们的数据为丝状病毒进入晚期内体提供了结构上的见解,并为设计病毒进入的治疗抑制剂提供了分子基础。