Suppr超能文献

降低全基因组关联研究的复杂性。

Reducing GWAS Complexity.

作者信息

Hazelett Dennis J, Conti David V, Han Ying, Al Olama Ali Amin, Easton Doug, Eeles Rosalind A, Kote-Jarai Zsofia, Haiman Christopher A, Coetzee Gerhard A

机构信息

a Bioinformatics and Computational Biology Research Center, Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles , CA , USA.

b Departments of Preventive Medicine and Urology , USC/Norris Cancer Center , USA.

出版信息

Cell Cycle. 2016;15(1):22-4. doi: 10.1080/15384101.2015.1120928.

Abstract

Genome-wide association studies (GWAS) have revealed numerous genomic 'hits' associated with complex phenotypes. In most cases these hits, along with surrogate genetic variation as measure by numerous single nucleotide polymorphisms (SNPs) that are in linkage disequilibrium, are not in coding genes making assignment of functionality or causality intractable. Here we propose that fine-mapping along with the matching of risk SNPs at chromatin biofeatures lessen this complexity by reducing the number of candidate functional/causal SNPs. For example, we show here that only on average 2 SNPs per prostate cancer risk locus are likely candidates for functionality/causality; we further propose that this manageable number should be taken forward in mechanistic studies. The candidate SNPs can be looked up for each prostate cancer risk region in 2 recent publications in 2015 (1,2) from our groups.

摘要

全基因组关联研究(GWAS)已经揭示了许多与复杂表型相关的基因组“命中位点”。在大多数情况下,这些命中位点,以及通过处于连锁不平衡状态的大量单核苷酸多态性(SNP)所测量的替代遗传变异,并不存在于编码基因中,这使得功能或因果关系的确定变得棘手。在此,我们提出通过在染色质生物特征上对风险SNP进行精细定位和匹配,可减少候选功能/因果SNP的数量,从而降低这种复杂性。例如,我们在此表明,每个前列腺癌风险位点平均仅有2个SNP可能是功能/因果关系的候选者;我们进一步提出,在机制研究中应考虑这个可控的数量。可以在我们团队2015年的两篇近期出版物(1,2)中查找每个前列腺癌风险区域的候选SNP。

相似文献

1
Reducing GWAS Complexity.
Cell Cycle. 2016;15(1):22-4. doi: 10.1080/15384101.2015.1120928.
2
Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms.
Genetics. 2011 Jun;188(2):449-60. doi: 10.1534/genetics.111.128595. Epub 2011 Apr 5.
3
Comprehensive functional annotation of seventy-one breast cancer risk Loci.
PLoS One. 2013 May 22;8(5):e63925. doi: 10.1371/journal.pone.0063925. Print 2013.
4
Molecular genetic studies of complex phenotypes.
Transl Res. 2012 Feb;159(2):64-79. doi: 10.1016/j.trsl.2011.08.001. Epub 2011 Aug 31.
5
Genome-wide pathway analysis of a genome-wide association study on psoriasis and Behcet's disease.
Mol Biol Rep. 2012 May;39(5):5953-9. doi: 10.1007/s11033-011-1407-9. Epub 2011 Dec 27.
7
The pursuit of genome-wide association studies: where are we now?
J Hum Genet. 2010 Apr;55(4):195-206. doi: 10.1038/jhg.2010.19. Epub 2010 Mar 19.
8
Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs.
Int J Mol Sci. 2022 Jan 23;23(3):1271. doi: 10.3390/ijms23031271.
9
The HDAC9-associated risk locus promotes coronary artery disease by governing TWIST1.
PLoS Genet. 2022 Jun 17;18(6):e1010261. doi: 10.1371/journal.pgen.1010261. eCollection 2022 Jun.
10
Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study.
Lancet Respir Med. 2013 Jun;1(4):309-317. doi: 10.1016/S2213-2600(13)70045-6. Epub 2013 Apr 17.

引用本文的文献

2
Genome-wide association studies are enriched for interacting genes.
BioData Min. 2025 Jan 15;18(1):3. doi: 10.1186/s13040-024-00421-w.
3
Genome wide association studies are enriched for interacting genes.
Res Sq. 2024 Oct 22:rs.3.rs-5189487. doi: 10.21203/rs.3.rs-5189487/v2.
4
: extended capability and database integration.
ArXiv. 2024 Jul 3:arXiv:2407.03441v1.
5
Investigating the genetic determination of duration-of-fertility trait in breeding hens.
Sci Rep. 2024 Jun 27;14(1):14819. doi: 10.1038/s41598-024-65675-0.
8
Post-GWAS knowledge gap: the how, where, and when.
NPJ Parkinsons Dis. 2020 Sep 9;6:23. doi: 10.1038/s41531-020-00125-y. eCollection 2020.

本文引用的文献

1
motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites.
Bioinformatics. 2015 Dec 1;31(23):3847-9. doi: 10.1093/bioinformatics/btv470. Epub 2015 Aug 12.
3
Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping.
PLoS Genet. 2015 Jun 24;11(6):e1005272. doi: 10.1371/journal.pgen.1005272. eCollection 2015 Jun.
4
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans.
Hum Mol Genet. 2015 Oct 1;24(19):5589-602. doi: 10.1093/hmg/ddv203. Epub 2015 May 29.
5
Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.
Genetics. 2015 Jul;200(3):719-36. doi: 10.1534/genetics.115.176107. Epub 2015 May 6.
6
Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.
Hum Mol Genet. 2015 Jul 1;24(13):3595-607. doi: 10.1093/hmg/ddv101. Epub 2015 Mar 24.
7
Integrating functional data to prioritize causal variants in statistical fine-mapping studies.
PLoS Genet. 2014 Oct 30;10(10):e1004722. doi: 10.1371/journal.pgen.1004722. eCollection 2014 Oct.
8
Identifying causal variants at loci with multiple signals of association.
Genetics. 2014 Oct;198(2):497-508. doi: 10.1534/genetics.114.167908. Epub 2014 Aug 7.
9
Comprehensive functional annotation of 77 prostate cancer risk loci.
PLoS Genet. 2014 Jan 30;10(1):e1004102. doi: 10.1371/journal.pgen.1004102. eCollection 2014 Jan.
10
Integrative annotation of variants from 1092 humans: application to cancer genomics.
Science. 2013 Oct 4;342(6154):1235587. doi: 10.1126/science.1235587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验