Suppr超能文献

回顾远程表型分析、全基因组关联研究(GWAS)以及可解释人工智能在耐旱冬小麦育种实际标记辅助选择中的重要作用。

Reviewing the essential roles of remote phenotyping, GWAS and explainable AI in practical marker-assisted selection for drought-tolerant winter wheat breeding.

作者信息

Chang-Brahim Ignacio, Koppensteiner Lukas J, Beltrame Lorenzo, Bodner Gernot, Saranti Anna, Salzinger Jules, Fanta-Jende Phillipp, Sulzbachner Christoph, Bruckmüller Felix, Trognitz Friederike, Samad-Zamini Mina, Zechner Elisabeth, Holzinger Andreas, Molin Eva M

机构信息

Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria.

Saatzucht Edelhof GmbH, Zwettl, Austria.

出版信息

Front Plant Sci. 2024 Apr 18;15:1319938. doi: 10.3389/fpls.2024.1319938. eCollection 2024.

Abstract

Marker-assisted selection (MAS) plays a crucial role in crop breeding improving the speed and precision of conventional breeding programmes by quickly and reliably identifying and selecting plants with desired traits. However, the efficacy of MAS depends on several prerequisites, with precise phenotyping being a key aspect of any plant breeding programme. Recent advancements in high-throughput remote phenotyping, facilitated by unmanned aerial vehicles coupled to machine learning, offer a non-destructive and efficient alternative to traditional, time-consuming, and labour-intensive methods. Furthermore, MAS relies on knowledge of marker-trait associations, commonly obtained through genome-wide association studies (GWAS), to understand complex traits such as drought tolerance, including yield components and phenology. However, GWAS has limitations that artificial intelligence (AI) has been shown to partially overcome. Additionally, AI and its explainable variants, which ensure transparency and interpretability, are increasingly being used as recognised problem-solving tools throughout the breeding process. Given these rapid technological advancements, this review provides an overview of state-of-the-art methods and processes underlying each MAS, from phenotyping, genotyping and association analyses to the integration of explainable AI along the entire workflow. In this context, we specifically address the challenges and importance of breeding winter wheat for greater drought tolerance with stable yields, as regional droughts during critical developmental stages pose a threat to winter wheat production. Finally, we explore the transition from scientific progress to practical implementation and discuss ways to bridge the gap between cutting-edge developments and breeders, expediting MAS-based winter wheat breeding for drought tolerance.

摘要

标记辅助选择(MAS)在作物育种中起着至关重要的作用,它通过快速、可靠地识别和选择具有所需性状的植株,提高了传统育种计划的速度和精度。然而,MAS的有效性取决于几个先决条件,精确的表型分析是任何植物育种计划的关键方面。由无人驾驶飞行器与机器学习相结合所推动的高通量遥感表型分析的最新进展,为传统的、耗时且费力的方法提供了一种无损且高效的替代方案。此外,MAS依赖于通过全基因组关联研究(GWAS)获得的标记-性状关联知识,以了解复杂性状,如耐旱性,包括产量构成因素和物候学。然而,GWAS存在局限性,而人工智能(AI)已被证明可以部分克服这些局限性。此外,人工智能及其可解释的变体,可确保透明度和可解释性,在整个育种过程中越来越多地被用作公认的问题解决工具。鉴于这些快速的技术进步,本综述概述了每个MAS背后的最新方法和流程,从表型分析、基因分型和关联分析到在整个工作流程中整合可解释的人工智能。在此背景下,我们特别探讨了培育具有更高耐旱性且产量稳定的冬小麦的挑战和重要性,因为关键发育阶段的区域干旱对冬小麦生产构成威胁。最后,我们探讨了从科学进展到实际应用的转变,并讨论了弥合前沿发展与育种者之间差距的方法,以加快基于MAS的耐旱冬小麦育种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71c3/11064034/d123343ad0ae/fpls-15-1319938-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验