Suppr超能文献

癌症临床试验中的定量成像

Quantitative Imaging in Cancer Clinical Trials.

作者信息

Yankeelov Thomas E, Mankoff David A, Schwartz Lawrence H, Lieberman Frank S, Buatti John M, Mountz James M, Erickson Bradley J, Fennessy Fiona M M, Huang Wei, Kalpathy-Cramer Jayashree, Wahl Richard L, Linden Hannah M, Kinahan Paul E, Zhao Binsheng, Hylton Nola M, Gillies Robert J, Clarke Laurence, Nordstrom Robert, Rubin Daniel L

机构信息

Institute of Imaging Science, Departments of Radiology and Radiological Sciences, Biomedical Engineering, Physics, and Cancer Biology, Vanderbilt University, Nashville, Tennessee.

Radiology/Nuclear Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Clin Cancer Res. 2016 Jan 15;22(2):284-90. doi: 10.1158/1078-0432.CCR-14-3336.

Abstract

As anticancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. Although traditional, anatomic CT, and MRI examinations are useful in many settings, increasing evidence suggests that these methods cannot answer the fundamental biologic and physiologic questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients and to provide a more efficient path for the development of improved targeted therapies.

摘要

随着旨在靶向特定分子途径的抗癌疗法不断发展,开发评估此类药物诱导反应的方法变得至关重要。尽管传统的解剖学CT和MRI检查在许多情况下都很有用,但越来越多的证据表明,这些方法无法回答对于评估乃至预测临床试验环境中治疗反应至关重要的基本生物学和生理学问题,尤其是在治疗开始后的关键时期。为了在靶向癌症治疗试验中最佳地应用定量成像方法的进展,需要进行新的基础设施改进,将这些新兴技术纳入最有可能产生影响的环境中。在本综述中,我们首先阐明分子靶向治疗时代对治疗反应评估的需求,并描述定量成像如何最有效地提供科学和临床相关数据。然后,我们描述应用定量成像所需的工具和方法,并提供实际将这些进展应用于临床试验常规操作的具体工作示例。我们通过提出策略来克服将这些定量成像方法更广泛地纳入临床试验以及最终纳入临床实践的障碍来得出结论。我们的目标是鼓励和指导肿瘤学界在临床试验中采用标准化的定量成像技术,以进一步实现癌症患者的个性化护理,并为开发改进的靶向治疗提供更有效的途径。

相似文献

1
Quantitative Imaging in Cancer Clinical Trials.
Clin Cancer Res. 2016 Jan 15;22(2):284-90. doi: 10.1158/1078-0432.CCR-14-3336.
2
3
Real time dynamic imaging and current targeted therapies in the war on cancer: a new paradigm.
Theranostics. 2013 May 25;3(6):437-47. doi: 10.7150/thno.5658. Print 2013.
4
Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician.
Eur J Nucl Med Mol Imaging. 2017 Aug;44(Suppl 1):41-54. doi: 10.1007/s00259-017-3695-3. Epub 2017 Apr 10.
5
Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.
Stroke. 2003 Aug;34(8):e109-37. doi: 10.1161/01.STR.0000082721.62796.09. Epub 2003 Jul 17.
6
New strategy for monitoring targeted therapy: molecular imaging.
Int J Nanomedicine. 2013;8:3703-13. doi: 10.2147/IJN.S51264. Epub 2013 Sep 30.
7
Toward molecular imaging-driven drug development in oncology.
Cancer Discov. 2011 Jun;1(1):25-8. doi: 10.1158/2159-8274.CD-11-0051. Epub 2011 Jun 1.
9
The project data sphere initiative: accelerating cancer research by sharing data.
Oncologist. 2015 May;20(5):464-e20. doi: 10.1634/theoncologist.2014-0431. Epub 2015 Apr 15.
10
Translational modeling and simulation approaches for molecularly targeted small molecule anticancer agents from bench to bedside.
Expert Opin Drug Metab Toxicol. 2016;12(3):253-65. doi: 10.1517/17425255.2016.1141895.

引用本文的文献

2
Image biomarkers and explainable AI: handcrafted features versus deep learned features.
Eur Radiol Exp. 2024 Nov 19;8(1):130. doi: 10.1186/s41747-024-00529-y.
4
Systematic evaluation of MRI-based characterization of tumor-associated vascular morphology and hemodynamics via a dynamic digital phantom.
J Med Imaging (Bellingham). 2024 Mar;11(2):024002. doi: 10.1117/1.JMI.11.2.024002. Epub 2024 Mar 8.
6
Toward Practical Integration of Omic and Imaging Data in Co-Clinical Trials.
Tomography. 2023 Apr 10;9(2):810-828. doi: 10.3390/tomography9020066.
7
An untrained deep learning method for reconstructing dynamic MR images from accelerated model-based data.
Magn Reson Med. 2023 Apr;89(4):1617-1633. doi: 10.1002/mrm.29547. Epub 2022 Dec 5.
8
Statistical considerations for repeatability and reproducibility of quantitative imaging biomarkers.
BJR Open. 2022 Aug 22;4(1):20210083. doi: 10.1259/bjro.20210083. eCollection 2022.
9
Analysis of simplicial complexes to determine when to sample for quantitative DCE MRI of the breast.
Magn Reson Med. 2023 Mar;89(3):1134-1150. doi: 10.1002/mrm.29511. Epub 2022 Nov 2.

本文引用的文献

1
ACRIN 6684: Assessment of Tumor Hypoxia in Newly Diagnosed Glioblastoma Using 18F-FMISO PET and MRI.
Clin Cancer Res. 2016 Oct 15;22(20):5079-5086. doi: 10.1158/1078-0432.CCR-15-2529. Epub 2016 May 16.
2
A web-based institutional DICOM distribution system with the integration of the Clinical Trial Processor (CTP).
J Med Syst. 2015 May;39(5):45. doi: 10.1007/s10916-014-0186-y. Epub 2015 Mar 3.
4
Biases in Multicenter Longitudinal PET Standardized Uptake Value Measurements.
Transl Oncol. 2014 Feb 1;7(1):48-54. doi: 10.1593/tlo.13850. eCollection 2014 Feb.
5
Automated tracking of quantitative assessments of tumor burden in clinical trials.
Transl Oncol. 2014 Feb 1;7(1):23-35. doi: 10.1593/tlo.13796. eCollection 2014 Feb.
6
Molecular imaging biomarkers for oncology clinical trials.
J Nucl Med. 2014 Apr;55(4):525-8. doi: 10.2967/jnumed.113.126128. Epub 2014 Mar 10.
8
New strategy for monitoring targeted therapy: molecular imaging.
Int J Nanomedicine. 2013;8:3703-13. doi: 10.2147/IJN.S51264. Epub 2013 Sep 30.
9
Quantitative imaging in cancer evolution and ecology.
Radiology. 2013 Oct;269(1):8-15. doi: 10.1148/radiol.13122697.
10
Use of early tumor shrinkage to predict long-term outcome in metastatic colorectal cancer treated with cetuximab.
J Clin Oncol. 2013 Oct 20;31(30):3764-75. doi: 10.1200/JCO.2012.42.8532. Epub 2013 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验