Suppr超能文献

分析单纯复形以确定何时对乳腺定量 DCE MRI 进行采样。

Analysis of simplicial complexes to determine when to sample for quantitative DCE MRI of the breast.

机构信息

The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA.

Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA.

出版信息

Magn Reson Med. 2023 Mar;89(3):1134-1150. doi: 10.1002/mrm.29511. Epub 2022 Nov 2.

Abstract

PURPOSE

A method is presented to select the optimal time points at which to measure DCE-MRI signal intensities, leaving time in the MR exam for high-spatial resolution image acquisition.

THEORY

Simplicial complexes are generated from the Kety-Tofts model pharmacokinetic parameters K and v . A geometric search selects optimal time points for accurate estimation of perfusion parameters.

METHODS

The DCE-MRI data acquired in women with invasive breast cancer (N = 27) were used to retrospectively compare parameter maps fit to full and subsampled time courses. Simplicial complexes were generated for a fixed range of Kety-Tofts model parameters and for the parameter ranges weighted by estimates from the fully sampled data. The largest-area manifolds determined the optimal three time points for each case. Simulations were performed along with retrospectively subsampled data fits. The agreement was computed between the model parameters fit to three points and those fit to all points.

RESULTS

The optimal three-point sample times were from the data-informed simplicial complex analysis and determined to be 65, 204, and 393 s after arrival of the contrast agent to breast tissue. In the patient data, tumor-median parameter values fit using all points and the three selected time points agreed with concordance correlation coefficients of 0.97 for K and 0.67 for v .

CONCLUSION

It is possible to accurately estimate pharmacokinetic parameters from three properly selected time points inserted into a clinical DCE-MRI breast exam. This technique can provide guidance on when to capture images for quantitative data between high-spatial-resolution DCE-MRI images.

摘要

目的

提出一种方法来选择最佳的时间点测量 DCE-MRI 信号强度,以便在 MR 检查中留出时间进行高空间分辨率图像采集。

理论

从 Kety-Tofts 模型药代动力学参数 K 和 v 生成单纯复形。几何搜索选择最佳时间点以准确估计灌注参数。

方法

使用从患有浸润性乳腺癌的女性中获得的 DCE-MRI 数据(N=27),回顾性比较拟合全采样和子采样时间曲线的参数图。为固定的 Kety-Tofts 模型参数范围以及根据全采样数据估计加权的参数范围生成单纯复形。最大面积流形确定了每种情况下的最佳三个时间点。进行了模拟以及回顾性子采样数据拟合。计算了拟合三个点和所有点的模型参数之间的一致性。

结果

最佳的三点采样时间来自数据驱动的单纯复形分析,确定为到达乳腺组织后 65、204 和 393 秒。在患者数据中,使用所有点和三个选定时间点拟合肿瘤中位数参数值的一致性相关系数为 0.97(K)和 0.67(v)。

结论

从临床 DCE-MRI 乳房检查中插入的三个适当选择的时间点,可以准确估计药代动力学参数。这项技术可以为在高空间分辨率 DCE-MRI 图像之间获取定量数据时何时捕获图像提供指导。

相似文献

1
Analysis of simplicial complexes to determine when to sample for quantitative DCE MRI of the breast.
Magn Reson Med. 2023 Mar;89(3):1134-1150. doi: 10.1002/mrm.29511. Epub 2022 Nov 2.
2
Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration?
Magn Reson Imaging. 2018 Oct;52:16-23. doi: 10.1016/j.mri.2018.05.007. Epub 2018 May 16.
8
The effect of temporal sampling on quantitative pharmacokinetic and three-time-point analysis of breast DCE-MRI.
Magn Reson Imaging. 2012 Sep;30(7):934-43. doi: 10.1016/j.mri.2012.02.011. Epub 2012 Apr 16.
9
A clinically feasible method to estimate pharmacokinetic parameters in breast cancer.
Med Phys. 2009 Aug;36(8):3786-94. doi: 10.1118/1.3152113.
10
Dynamic contrast-enhanced MRI: Study of inter-software accuracy and reproducibility using simulated and clinical data.
J Magn Reson Imaging. 2016 Jun;43(6):1288-300. doi: 10.1002/jmri.25101. Epub 2015 Dec 21.

引用本文的文献

1
Structural and practical identifiability of contrast transport models for DCE-MRI.
PLoS Comput Biol. 2024 May 15;20(5):e1012106. doi: 10.1371/journal.pcbi.1012106. eCollection 2024 May.
2
Deconvolution-Based Pharmacokinetic Analysis to Improve the Prediction of Pathological Information of Breast Cancer.
J Imaging Inform Med. 2024 Feb;37(1):13-24. doi: 10.1007/s10278-023-00915-9. Epub 2024 Jan 10.

本文引用的文献

1
The diagnostic performance of dynamic contrast-enhanced MRI and its correlation with subtypes of breast cancer.
Medicine (Baltimore). 2021 Dec 23;100(51):e28109. doi: 10.1097/MD.0000000000028109.
2
Quantitative multiparametric MRI predicts response to neoadjuvant therapy in the community setting.
Breast Cancer Res. 2021 Nov 27;23(1):110. doi: 10.1186/s13058-021-01489-6.
3
Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting.
Nat Protoc. 2021 Nov;16(11):5309-5338. doi: 10.1038/s41596-021-00617-y. Epub 2021 Sep 22.
5
Emerging Therapeutic Drugs in Metastatic Triple-Negative Breast Cancer.
Breast Cancer (Auckl). 2021 Mar 22;15:11782234211002491. doi: 10.1177/11782234211002491. eCollection 2021.
8
Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer.
Breast Cancer Res. 2020 May 28;22(1):58. doi: 10.1186/s13058-020-01292-9.
9
Pembrolizumab for Early Triple-Negative Breast Cancer.
N Engl J Med. 2020 Feb 27;382(9):810-821. doi: 10.1056/NEJMoa1910549.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验