Moloney Brendan, Li Xin, Hirano Michael, Saad Eddin Assim, Lim Jeong Youn, Biswas Debosmita, Kazerouni Anum S, Tudorica Alina, Li Isabella, Bryant Mary Lynn, Wille Courtney, Pyle Chelsea, Rahbar Habib, Hsieh Su Kim, Rice-Stitt Travis L, Dintzis Suzanne M, Bashir Amani, Hobbs Evthokia, Zimmer Alexandra, Specht Jennifer M, Phadke Sneha, Fleege Nicole, Holmes James H, Partridge Savannah C, Huang Wei
Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, United States.
Department of Radiology, University of Washington, Seattle, WA, United States.
Front Oncol. 2024 Nov 29;14:1395502. doi: 10.3389/fonc.2024.1395502. eCollection 2024.
Quantitative dynamic contrast-enhanced (DCE) MRI as a promising method for the prediction of breast cancer response to neoadjuvant chemotherapy (NAC) has been demonstrated mostly in single-center and single-vendor platform studies. This preliminary study reports the initial experience in implementing quantitative breast DCE-MRI in multi-center (MC) and multi-vendor platform (MP) settings to predict NAC response. MRI data, including B mapping, variable flip angle (VFA) measurements of native tissue R (R), and DCE-MRI, were acquired during NAC at three sites using 3T systems with Siemens, Philips, and GE platforms, respectively. High spatiotemporal resolution DCE-MRI was performed using similar vendor product sequences with k-space undersampling during acquisition and view sharing during reconstruction. A breast phantom was used for quality assurance/quality control (QA/QC) across sites. The Tofts model (TM) and shutter-speed model (SSM) were used for pharmacokinetic (PK) analysis of the DCE data. Additionally, tumor region of interest (ROI)- . voxel-based analyses in combination with the use of VFA-measured R . fixed, literature-reported R were investigated to determine the optimal analysis approach. Results from 15 patients who completed the study are reported. Voxel-based PK analysis using fixed R was deemed the optimal approach, which allowed the inclusion of data from one vendor platform where VFA measurements produced ≥100% overestimation of R. The semi-quantitative signal enhancement ratio (SER) and quantitative PK parameters outperformed the tumor longest diameter (LD) in the prediction of pathologic complete response (pCR) non-pCR after the first NAC cycle, whereas K consistently provided more accurate predictions than both SER and LD after the first NAC cycle and at the NAC midpoint. Both TM and SSM K and k were excellent predictors of response at the NAC midpoint with ROC AUC >0.90, while the SSM parameters (AUC ≥0.80) performed better than their TM counterparts (AUC <0.80) after the first NAC cycle. The initial experience of this ongoing study indicates the importance of QA/QC using a phantom and suggests that deploying voxel-based PK analysis using a fixed R may mitigate random errors from R measurements across platforms and potentially eliminate the need for B and VFA acquisitions in MC and MP trials.
定量动态对比增强(DCE)磁共振成像(MRI)作为预测乳腺癌新辅助化疗(NAC)反应的一种有前景的方法,大多在单中心和单厂商平台研究中得到证实。这项初步研究报告了在多中心(MC)和多厂商平台(MP)环境中实施定量乳腺DCE-MRI以预测NAC反应的初步经验。在NAC期间,分别使用西门子、飞利浦和通用电气平台的3T系统在三个地点采集了MRI数据,包括B图、天然组织R(R)的可变翻转角(VFA)测量以及DCE-MRI。使用类似厂商产品序列进行高时空分辨率DCE-MRI,采集期间进行k空间欠采样,重建期间进行视图共享。使用乳腺体模进行各站点间的质量保证/质量控制(QA/QC)。采用Tofts模型(TM)和快门速度模型(SSM)对DCE数据进行药代动力学(PK)分析。此外,还研究了肿瘤感兴趣区(ROI)基于体素的分析,结合使用VFA测量的R和固定的、文献报道的R,以确定最佳分析方法。报告了15名完成研究的患者的结果。使用固定R的基于体素的PK分析被认为是最佳方法,这使得能够纳入来自一个厂商平台的数据,在该平台上VFA测量对R的高估≥100%。在预测第一个NAC周期后的病理完全缓解(pCR)与非pCR方面,半定量信号增强率(SER)和定量PK参数优于肿瘤最长径(LD),而在第一个NAC周期后和NAC中点时,K始终比SER和LD提供更准确的预测。在NAC中点时,TM和SSM的K和k都是反应的优秀预测指标,ROC曲线下面积(AUC)>0.90,而在第一个NAC周期后,SSM参数(AUC≥0.80)的表现优于TM参数(AUC<0.80)。这项正在进行的研究的初步经验表明了使用体模进行QA/QC的重要性,并表明在MC和MP试验中采用基于固定R的体素PK分析可能会减少跨平台R测量的随机误差,并有可能无需进行B和VFA采集。