Suppr超能文献

肿瘤生长的数学模型及其快速数值方法

Mathematical model and its fast numerical method for the tumor growth.

作者信息

Lee Hyun Geun, Kim Yangjin, Kim Junseok

机构信息

Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, South Korea. email:

出版信息

Math Biosci Eng. 2015 Dec;12(6):1173-87. doi: 10.3934/mbe.2015.12.1173.

Abstract

In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al., Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-order Allen--Cahn equation with a space--time dependent Lagrange multiplier instead of using the fourth-order Cahn--Hilliard equation in the original model. To numerically solve the new model, we apply a recently developed hybrid numerical method. We perform various numerical experiments. The computational results demonstrate that the new model is not only fast but also has a good feature such as distributing excess mass from the inside of tumor to its boundary regions.

摘要

在本文中,我们重新阐述了肿瘤生长的扩散界面模型(S.M. 怀斯等人,《三维多物种非线性肿瘤生长 - I:模型与数值方法》,《理论生物学杂志》253卷(2008年)524 - 543页)。在新提出的模型中,我们使用带有时空依赖拉格朗日乘子的守恒二阶艾伦 - 卡恩方程,而非原始模型中使用的四阶卡恩 - 希利尔方程。为了数值求解新模型,我们应用了一种最近开发的混合数值方法。我们进行了各种数值实验。计算结果表明,新模型不仅速度快,而且具有将多余质量从肿瘤内部扩散到其边界区域等良好特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验