Ghobadi Ahmadreza F, Jayaraman Arthi
Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.
Soft Matter. 2016 Feb 28;12(8):2276-87. doi: 10.1039/c5sm02868j.
In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.
在本文中,我们研究了不同的寡核酸主链化学如何影响寡核酸的杂交/解链热力学。我们首先描述了我们开发的具有可调参数的粗粒度(CG)模型,该模型能够研究天然存在的寡核酸,如DNA,以及它们的化学修饰类似物,如肽核酸(PNA)和锁核酸(LNA)。使用这种CG模型以及在隐式溶剂和显式离子条件下的分子动力学模拟所获得的DNA解链曲线,与使用经验性最近邻模型获得的解链曲线相匹配。然后,我们利用这些CG模拟来阐明主链柔性、电荷以及沿主链的核碱基间距对解链曲线、杂交时的势能和构象熵变化以及碱基对氢键停留时间的影响。我们发现,增加主链柔性会降低双链体的热稳定性和解链温度,这主要是由于杂交时构象熵损失增加所致。去除主链上的电荷会增强双链体的热稳定性,这是因为消除了静电排斥作用,从而在杂交时获得了更大的能量增益。最后,增加核碱基间距会降低双链体的热稳定性,这是由于对双链体稳定性至关重要的堆积相互作用减弱所致。