López-Cruz Jaime, Óscar Crespo-Salvador, Emma Fernández-Crespo, Pilar García-Agustín, Carmen González-Bosch
Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 46980 Paterna, Valencia, Spain.
Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Escola Superior de Tecnologia i Ciències Experimentals, Universitat Jaume I, 12071 Castellón, Spain.
Mol Plant Pathol. 2017 Jan;18(1):16-31. doi: 10.1111/mpp.12370. Epub 2016 May 3.
Plants activate responses against pathogens, including the oxidative burst. Necrotrophic pathogens can produce reactive oxygen species (ROS) that benefit the colonization process. Previously, we have demonstrated that tomato plants challenged with Botrytis cinerea accumulate ROS and callose, together with the induction of genes involved in defence, signalling and oxidative metabolism. Here, we studied the infection phenotype of the Δbcsod1 strain in both tomato and Arabidopsis plants. This mutant lacks bcsod1, which encodes Cu-Zn superoxide dismutase (SOD). This enzyme catalyses the conversion of superoxide ion ( O2-) into hydrogen peroxide (H O ). ROS play a protective role and act as signals in plants. Δbcsod1 displayed reduced virulence compared with wild-type B05.10 in both species. Plants infected with Δbcsod1 accumulated less H O and more O2- than those infected with B05.10, which is associated with an increase in the defensive polymer callose. This supports a major role of fungal SOD in H O production during the plant-pathogen interaction. The early induction of the callose synthase gene PMR4 suggested that changes in ROS altered plant defensive responses at the transcriptional level. The metabolites and genes involved in signalling and in response to oxidative stress were differentially expressed on Δbcsod1 infection, supporting the notion that plants perceive changes in ROS balance and activate defence responses. A higher O /H O ratio seems to be beneficial for plant protection against this necrotroph. Our results highlight the relevance of callose and the oxylipin 12-oxo-phytodienoic acid (OPDA) in the response to changes in the oxidative environment, and clarify the mechanisms that underlie the responses to Botrytis in Arabidopsis and tomato plants.
植物会激活针对病原体的反应,包括氧化爆发。坏死营养型病原体能够产生活性氧(ROS),这有利于其定殖过程。此前,我们已经证明,受到灰葡萄孢菌挑战的番茄植株会积累ROS和胼胝质,同时诱导参与防御、信号传导和氧化代谢的基因表达。在此,我们研究了Δbcsod1菌株在番茄和拟南芥植株中的感染表型。该突变体缺乏编码铜锌超氧化物歧化酶(SOD)的bcsod1。这种酶催化超氧阴离子(O2-)转化为过氧化氢(H2O)。ROS在植物中起到保护作用并作为信号分子。与野生型B05.10相比,Δbcsod1在这两个物种中的毒力均有所降低。感染Δbcsod1的植株比感染B05.10的植株积累的H2O更少,O2-更多,这与防御性聚合物胼胝质的增加有关。这支持了真菌SOD在植物-病原体相互作用过程中H2O产生过程中发挥主要作用的观点。胼胝质合酶基因PMR4的早期诱导表明,ROS的变化在转录水平上改变了植物的防御反应。参与信号传导和氧化应激反应的代谢物和基因在感染Δbcsod1时差异表达,这支持了植物感知ROS平衡变化并激活防御反应的观点。较高的O2-/H2O比例似乎有利于植物抵御这种坏死营养型病原体。我们的结果突出了胼胝质和氧脂素12-氧代植物二烯酸(OPDA)在对氧化环境变化的反应中的相关性,并阐明了拟南芥和番茄植株对灰葡萄孢菌反应的潜在机制。