Kariyazono Hirokazu, Nadai Ryo, Miyajima Rin, Takechi-Haraya Yuki, Baba Teruhiko, Shigenaga Akira, Okuhira Keiichiro, Otaka Akira, Saito Hiroyuki
Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan.
Division of Drugs, National Institute of Health Sciences, Tokyo, 158-8501, Japan.
J Pept Sci. 2016 Feb;22(2):116-22. doi: 10.1002/psc.2847. Epub 2016 Jan 19.
Nanodiscs are composed of scaffold protein or peptide such as apolipoprotein A-I (apoA-I) and phospholipids. Although peptide-based nanodiscs have an advantage to modulate the size of nanodiscs by changing phospholipid/peptide ratios, they are usually less stable than apoA-I-based nanodiscs. In this study, we designed a novel nanodisc scaffold peptide (NSP) that has proline-punctuated bihelical amphipathic structure based on apoA-I mimetic peptides. NSP formed α-helical structure on 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) nanodiscs prepared by cholate dialysis method. Dynamic light scattering measurements demonstrated that diameters of NSP nanodiscs vary depending upon POPC/NSP ratios. Comparison of thermal unfolding of nanodiscs monitored by circular dichroism measurements demonstrated that NSP forms much more stable nanodiscs with POPC than monohelical peptide, 4F, exhibiting comparable stability to apoA-I-POPC nanodiscs. Intrinsic Trp fluorescence measurements showed that Trp residues of NSP exhibit more hydrophobic environment than that of 4 F on nanodiscs, suggesting the stronger interaction of NSP with phospholipids. Thus, the bihelical structure of NSP appears to increase the stability of nanodiscs because of the enhanced interaction of peptides with phospholipids. In addition, NSP as well as 4F spontaneously solubilized POPC vesicles into nanodiscs without using detergent. These results indicate that bihelical NSP forms nanodiscs with comparable stability to apoA-I and has an ability to control the size of nanodiscs simply by changing phospholipid/peptide ratios.
纳米圆盘由支架蛋白或肽(如载脂蛋白A-I(apoA-I))和磷脂组成。尽管基于肽的纳米圆盘具有通过改变磷脂/肽比例来调节纳米圆盘大小的优势,但它们通常比基于apoA-I的纳米圆盘稳定性差。在本研究中,我们基于apoA-I模拟肽设计了一种具有脯氨酸间断双螺旋两亲结构的新型纳米圆盘支架肽(NSP)。NSP在通过胆酸盐透析法制备的1-棕榈酰-2-油酰磷脂酰胆碱(POPC)纳米圆盘上形成α-螺旋结构。动态光散射测量表明,NSP纳米圆盘的直径随POPC/NSP比例而变化。通过圆二色性测量监测的纳米圆盘热解折叠比较表明,与单螺旋肽4F相比,NSP与POPC形成的纳米圆盘稳定性更高,其稳定性与apoA-I-POPC纳米圆盘相当。内源性色氨酸荧光测量表明,NSP的色氨酸残基在纳米圆盘上比4F表现出更疏水的环境,这表明NSP与磷脂的相互作用更强。因此,由于肽与磷脂相互作用增强,NSP的双螺旋结构似乎增加了纳米圆盘的稳定性。此外,NSP以及4F无需使用去污剂就能自发地将POPC囊泡溶解成纳米圆盘。这些结果表明,双螺旋NSP形成的纳米圆盘与apoA-I具有相当的稳定性,并且具有通过简单改变磷脂/肽比例来控制纳米圆盘大小的能力。