Suppr超能文献

锂离子电池结构,可在低温下自加热。

Lithium-ion battery structure that self-heats at low temperatures.

机构信息

Department of Mechanical and Nuclear Engineering and Electrochemical Engine Center (ECEC), The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

EC Power, 341 Science Park Road, State College, Pennsylvania 16803, USA.

出版信息

Nature. 2016 Jan 28;529(7587):515-8. doi: 10.1038/nature16502. Epub 2016 Jan 20.

Abstract

Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the 'all-climate battery' cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

摘要

锂离子电池在低于零摄氏度的温度下会严重损失电量,限制了它们在电动汽车在寒冷气候和高海拔无人机等应用中的使用。这种电量损失的实际后果是需要更大、更昂贵的电池组来进行发动机冷启动、在寒冷天气下缓慢充电、限制再生制动,以及使车辆巡航里程减少多达 40%。以前,提高锂离子电池低温性能的尝试主要集中在开发添加剂以改善电解质的低温行为,以及对电池进行外部加热和绝缘。在这里,我们报告了一种锂离子电池结构,即“全气候电池”单元,它无需外部加热装置或电解质添加剂即可从零下自行加热。自加热机制创造了一个有利于高放电/充电功率的电化学界面。我们表明,这种电池内部在零下 20 摄氏度的情况下在 20 秒内升温至零摄氏度,在零下 30 摄氏度的情况下在 30 秒内升温至零摄氏度,分别仅消耗电池容量的 3.8%和 5.5%。自加热的全气候电池在 50%的荷电状态和零下 30 摄氏度下的放电/再生功率为 1,061/1,425 瓦/千克,提供了 6.4-12.3 倍的最新锂离子电池的功率。我们预计,全气候电池将使发动机停启技术能够为每年制造的 8000 万辆新车节省 5-10%的燃料。鉴于只有一小部分电池能量用于自加热,我们设想全气候电池单元也可能对插电式电动汽车、机器人和太空探索应用有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验