Suppr超能文献

基于结构从光镊推导蛋白质折叠中间体和能量

Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers.

作者信息

Rebane Aleksander A, Ma Lu, Zhang Yongli

机构信息

Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut.

Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut.

出版信息

Biophys J. 2016 Jan 19;110(2):441-454. doi: 10.1016/j.bpj.2015.12.003.

Abstract

Optical tweezers (OTs) measure the force-dependent time-resolved extension of a single macromolecule tethered between two trapped beads. From this measurement, it is possible to determine the folding intermediates, energies, and kinetics of the macromolecule. Previous data analysis generally has used the extension as a reaction coordinate to characterize the observed folding transitions. Despite its convenience, the extension poorly describes folding in the absence of force. Here, we chose the contour length of the unfolded polypeptide as a reaction coordinate and modeled the extensions of protein structures along their predicted folding pathways based on high-resolution structures of the proteins in their native states. We included the extension in our model to calculate the total extensions, energies, and transition rates of the proteins as a function of force. We fit these calculations to the corresponding experimental measurements and obtained the best-fit conformations and energies of proteins in different folding states. We applied our method to analyze single-molecule trajectories of two representative protein complexes responsible for membrane fusion, the HIV-1 glycoprotein 41 and the synaptic SNARE proteins, which involved transitions between two and five states, respectively. Nonlinear fitting of the model to the experimental data revealed the structures of folding intermediates and transition states and their associated energies. Our results demonstrate that the contour length is a useful reaction coordinate to characterize protein folding and that intrinsic extensions of protein structures should be taken into account to properly derive the conformations and energies of protein folding intermediates from single-molecule manipulation experiments.

摘要

光镊(OTs)可测量单个大分子连接在两个捕获微珠之间时,力依赖的时间分辨伸长情况。通过这种测量,能够确定大分子的折叠中间体、能量和动力学。以往的数据分析通常将伸长作为反应坐标来表征所观察到的折叠转变。尽管其便利性,但在没有力的情况下,伸长并不能很好地描述折叠过程。在此,我们选择未折叠多肽的轮廓长度作为反应坐标,并基于蛋白质天然状态下的高分辨率结构,对蛋白质结构沿其预测折叠途径的伸长情况进行建模。我们在模型中纳入伸长情况,以计算蛋白质的总伸长、能量和转变速率随力的变化。我们将这些计算结果与相应的实验测量值进行拟合,从而获得不同折叠状态下蛋白质的最佳拟合构象和能量。我们应用我们的方法分析了两种负责膜融合的代表性蛋白质复合物的单分子轨迹,即HIV - 1糖蛋白41和突触SNARE蛋白,它们分别涉及两态和五态之间的转变。将模型对实验数据进行非线性拟合,揭示了折叠中间体和过渡态的结构及其相关能量。我们的结果表明,轮廓长度是表征蛋白质折叠的有用反应坐标,并且在从单分子操纵实验中正确推导蛋白质折叠中间体的构象和能量时,应考虑蛋白质结构的固有伸长情况。

相似文献

1
Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers.
Biophys J. 2016 Jan 19;110(2):441-454. doi: 10.1016/j.bpj.2015.12.003.
2
Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.
Methods Mol Biol. 2017;1486:357-390. doi: 10.1007/978-1-4939-6421-5_14.
3
High-resolution optical tweezers for single-molecule manipulation.
Yale J Biol Med. 2013 Sep 20;86(3):367-83. eCollection 2013 Sep.
4
Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex.
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):E8031-E8040. doi: 10.1073/pnas.1605748113. Epub 2016 Nov 28.
5
DNA molecular handles for single-molecule protein-folding studies by optical tweezers.
Methods Mol Biol. 2011;749:255-71. doi: 10.1007/978-1-61779-142-0_18.
6
The complex folding network of single calmodulin molecules.
Science. 2011 Oct 28;334(6055):512-6. doi: 10.1126/science.1207598.
7
Single-Molecule Chemo-Mechanical Spectroscopy Provides Structural Identity of Folding Intermediates.
Biophys J. 2016 Mar 29;110(6):1280-90. doi: 10.1016/j.bpj.2015.12.042.
8
Force-Dependent Folding and Unfolding Kinetics in DNA Hairpins Reveals Transition-State Displacements along a Single Pathway.
J Phys Chem Lett. 2017 Mar 2;8(5):895-900. doi: 10.1021/acs.jpclett.6b02687. Epub 2017 Feb 9.
9
Factors governing the foldability of proteins.
Proteins. 1996 Dec;26(4):411-41. doi: 10.1002/(SICI)1097-0134(199612)26:4<411::AID-PROT4>3.0.CO;2-E.
10
Full distance-resolved folding energy landscape of one single protein molecule.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2013-8. doi: 10.1073/pnas.0909854107. Epub 2010 Jan 19.

引用本文的文献

2
Nonlinear compliance of NompC gating spring and its implication in mechanotransduction.
bioRxiv. 2024 Jun 24:2024.06.20.599842. doi: 10.1101/2024.06.20.599842.
5
A dynamic template complex mediates Munc18-chaperoned SNARE assembly.
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2215124119. doi: 10.1073/pnas.2215124119. Epub 2022 Dec 1.
6
Energetics, kinetics, and pathways of SNARE assembly in membrane fusion.
Crit Rev Biochem Mol Biol. 2022 Aug;57(4):443-460. doi: 10.1080/10409238.2022.2121804. Epub 2022 Sep 24.
7
Quantitative Models of Lipid Transfer and Membrane Contact Formation.
Contact (Thousand Oaks). 2022;5:1-21. doi: 10.1177/25152564221096024. Epub 2022 May 4.
8
Direct observation of chaperone-modulated talin mechanics with single-molecule resolution.
Commun Biol. 2022 Apr 4;5(1):307. doi: 10.1038/s42003-022-03258-3.
9
Stepwise membrane binding of extended synaptotagmins revealed by optical tweezers.
Nat Chem Biol. 2022 Mar;18(3):313-320. doi: 10.1038/s41589-021-00914-3. Epub 2021 Dec 16.
10
Force Dependence of Proteins' Transition State Position and the Bell-Evans Model.
Nanomaterials (Basel). 2021 Nov 11;11(11):3023. doi: 10.3390/nano11113023.

本文引用的文献

1
Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis.
Elife. 2015 Dec 23;4:e09580. doi: 10.7554/eLife.09580.
2
Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition.
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2855-64. doi: 10.1073/pnas.1424995112. Epub 2015 May 18.
3
Thermodynamics of force-dependent folding and unfolding of small protein and nucleic acid structures.
Integr Biol (Camb). 2015 Oct;7(10):1154-60. doi: 10.1039/c5ib00038f. Epub 2015 Mar 24.
4
Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
J Am Chem Soc. 2015 Mar 18;137(10):3540-6. doi: 10.1021/ja5119368. Epub 2015 Mar 9.
5
The molecular machinery of neurotransmitter release (Nobel lecture).
Angew Chem Int Ed Engl. 2014 Nov 17;53(47):12696-717. doi: 10.1002/anie.201406359. Epub 2014 Oct 22.
6
Structure and immune recognition of trimeric pre-fusion HIV-1 Env.
Nature. 2014 Oct 23;514(7523):455-61. doi: 10.1038/nature13808. Epub 2014 Oct 8.
8
Routes to DNA accessibility: alternative pathways for nucleosome unwinding.
Biophys J. 2014 Jul 15;107(2):384-392. doi: 10.1016/j.bpj.2014.05.042.
9
Reconstructing folding energy landscapes by single-molecule force spectroscopy.
Annu Rev Biophys. 2014;43:19-39. doi: 10.1146/annurev-biophys-051013-022754.
10
The amyloid state and its association with protein misfolding diseases.
Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96. doi: 10.1038/nrm3810.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验