Suppr超能文献

小鼠外毛细胞的光遗传学控制

Optogenetic Control of Mouse Outer Hair Cells.

作者信息

Wu Tao, Ramamoorthy Sripriya, Wilson Teresa, Chen Fangyi, Porsov Edward, Subhash Hrebesh, Foster Sarah, Zhang Yuan, Omelchenko Irina, Bateschell Michael, Wang Lingyan, Brigande John V, Jiang Zhi-Gen, Mao Tianyi, Nuttall Alfred L

机构信息

Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon.

The Vollum Institute, Oregon Health & Science University, Portland, Oregon.

出版信息

Biophys J. 2016 Jan 19;110(2):493-502. doi: 10.1016/j.bpj.2015.11.3521.

Abstract

Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects.

摘要

哺乳动物的正常听力依赖于外毛细胞(OHC)通过其体细胞运动性和力产生进行的声音放大。然而,OHC力产生在耳蜗放大和频率调谐中的作用尚未完全明确。目前,用于生理或临床研究的现有OHC操纵技术受到其侵入性、缺乏精确性以及时空分辨率差的限制。为克服这些限制,我们探索了一种基于通道视紫红质2(ChR-2)的光遗传学方法,ChR-2是最初在莱茵衣藻中发现的一种直接光激活的非选择性阳离子通道。比较了三种方法:1)腺相关病毒介导的子宫内将ChR-2基因转移到发育中的小鼠耳囊中;2)在听觉细胞系(HEI-OC1)中表达ChR-2(H134R);3)在携带ChR-2条件等位基因的小鼠品系的OHC中表达ChR-2。全细胞记录显示,蓝光(470 nm)在小鼠OHC和HEI-OC1细胞中均引发了ChR-2典型的非选择性阳离子电流,反转电位约为零,并在两种细胞类型中产生去极化。此外,脉冲光刺激(10 Hz)分别在小鼠OHC和HEI-OC1细胞中引发了1:1的重复去极化和ChR-2电流。OHC中去极化的时间常数为1.45 ms,比HEI-OC1细胞快10倍,这使得高达10/s的光刺激能够引发相应的膜电位变化。我们的研究表明,ChR-2能够成功地在小鼠OHC和HEI-OC1细胞中表达,并且这些细胞呈现出典型的光敏感电流和去极化。然而,我们在体内实验中诱导的ChR-2电流量不足以产生可测量的耳蜗效应。

相似文献

1
Optogenetic Control of Mouse Outer Hair Cells.小鼠外毛细胞的光遗传学控制
Biophys J. 2016 Jan 19;110(2):493-502. doi: 10.1016/j.bpj.2015.11.3521.
5
HEI-OC1 cells as a model for investigating prestin function.HEI-OC1细胞作为研究声动蛋白功能的模型。
Hear Res. 2016 May;335:9-17. doi: 10.1016/j.heares.2016.02.001. Epub 2016 Feb 6.

本文引用的文献

2
Considering optogenetic stimulation for cochlear implants.考虑将光遗传学刺激应用于人工耳蜗。
Hear Res. 2015 Apr;322:224-34. doi: 10.1016/j.heares.2015.01.005. Epub 2015 Jan 16.
4
Optogenetic stimulation of the auditory pathway.光遗传学刺激听觉通路。
J Clin Invest. 2014 Mar;124(3):1114-29. doi: 10.1172/JCI69050. Epub 2014 Feb 10.
5
The spatial pattern of cochlear amplification.耳蜗放大的空间模式。
Neuron. 2012 Dec 6;76(5):989-97. doi: 10.1016/j.neuron.2012.09.031.
10
High-frequency limit of neural stimulation with ChR2.使用ChR2进行神经刺激的高频极限
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4167-70. doi: 10.1109/IEMBS.2011.6091034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验