Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Science. 2014 Apr 25;344(6182):420-4. doi: 10.1126/science.1252367.
Using light to silence electrical activity in targeted cells is a major goal of optogenetics. Available optogenetic proteins that directly move ions to achieve silencing are inefficient, pumping only a single ion per photon across the cell membrane rather than allowing many ions per photon to flow through a channel pore. Building on high-resolution crystal-structure analysis, pore vestibule modeling, and structure-guided protein engineering, we designed and characterized a class of channelrhodopsins (originally cation-conducting) converted into chloride-conducting anion channels. These tools enable fast optical inhibition of action potentials and can be engineered to display step-function kinetics for stable inhibition, outlasting light pulses and for orders-of-magnitude-greater light sensitivity of inhibited cells. The resulting family of proteins defines an approach to more physiological, efficient, and sensitive optogenetic inhibition.
用光来沉默目标细胞中的电活动是光遗传学的主要目标。现有的直接移动离子以实现沉默的光遗传学蛋白效率低下,每吸收一个光子只能穿过细胞膜泵出一个离子,而不是允许多个离子通过通道孔流动。基于高分辨率晶体结构分析、孔前庭建模和结构导向的蛋白质工程,我们设计并表征了一类通道视紫红质(最初是阳离子传导)转化为氯离子传导的阴离子通道。这些工具可实现动作电位的快速光学抑制,并且可以通过工程设计使其表现出阶跃动力学,从而实现稳定的抑制,持续时间超过光脉冲,并使被抑制细胞的光敏感性提高几个数量级。由此产生的蛋白质家族定义了一种更具生理功能、高效和敏感的光遗传学抑制方法。