Suppr超能文献

通过基因网络分析预测化疗药物组合

Predicting chemotherapeutic drug combinations through gene network profiling.

作者信息

Nguyen Thi Thuy Trang, Chua Jacqueline Kia Kee, Seah Kwi Shan, Koo Seok Hwee, Yee Jie Yin, Yang Eugene Guorong, Lim Kim Kiat, Pang Shermaine Yu Wen, Yuen Audrey, Zhang Louxin, Ang Wee Han, Dymock Brian, Lee Edmund Jon Deoon, Chen Ee Sin

机构信息

Department of Biochemistry, National University of Singapore, Singapore.

National University Health System (NUHS), Singapore.

出版信息

Sci Rep. 2016 Jan 21;6:18658. doi: 10.1038/srep18658.

Abstract

Contemporary chemotherapeutic treatments incorporate the use of several agents in combination. However, selecting the most appropriate drugs for such therapy is not necessarily an easy or straightforward task. Here, we describe a targeted approach that can facilitate the reliable selection of chemotherapeutic drug combinations through the interrogation of drug-resistance gene networks. Our method employed single-cell eukaryote fission yeast (Schizosaccharomyces pombe) as a model of proliferating cells to delineate a drug resistance gene network using a synthetic lethality workflow. Using the results of a previous unbiased screen, we assessed the genetic overlap of doxorubicin with six other drugs harboring varied mechanisms of action. Using this fission yeast model, drug-specific ontological sub-classifications were identified through the computation of relative hypersensitivities. We found that human gastric adenocarcinoma cells can be sensitized to doxorubicin by concomitant treatment with cisplatin, an intra-DNA strand crosslinking agent, and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. Our findings point to the utility of fission yeast as a model and the differential targeting of a conserved gene interaction network when screening for successful chemotherapeutic drug combinations for human cells.

摘要

当代化疗治疗采用多种药物联合使用。然而,为这种治疗选择最合适的药物并非易事,也不是一项简单直接的任务。在此,我们描述了一种靶向方法,该方法可通过对耐药基因网络的研究,促进化疗药物组合的可靠选择。我们的方法采用单细胞真核生物裂殖酵母(粟酒裂殖酵母)作为增殖细胞模型,使用合成致死工作流程来描绘耐药基因网络。利用先前无偏筛选的结果,我们评估了阿霉素与其他六种作用机制不同的药物的基因重叠情况。使用这个裂殖酵母模型,通过计算相对敏感性来确定药物特异性的本体亚分类。我们发现,通过与顺铂(一种DNA链内交联剂)和辛二酰苯胺异羟肟酸(一种组蛋白去乙酰化酶抑制剂)联合治疗,人胃腺癌细胞对阿霉素敏感。我们的研究结果表明,裂殖酵母作为一种模型具有实用性,并且在筛选针对人类细胞的成功化疗药物组合时,对保守基因相互作用网络进行差异性靶向具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a58f/4726371/d60d47d822b0/srep18658-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验