Barbot Antoine, Decanini Dominique, Hwang Gilgueng
Laboratoire de Photonique et de Nanostructures, Centre National de la Recherche Scientifique, Marcoussis, 91460, France.
Sci Rep. 2016 Jan 21;6:19041. doi: 10.1038/srep19041.
Mobile microrobots have a promising future in various applications. These include targeted drug delivery, local measurement, biopsy or microassembly. Studying mobile microrobots inside microfluidics is an essential step towards such applications. But in this environment that was not designed for the robot, integration process and propulsion robustness still pose technological challenges. In this paper, we present a helical microrobot with three different motions, designed to achieve these goals. These motions are rolling, spintop motion and swimming. Through these multiple motions, microrobots are able to selectively integrate a chip through a microfluidic channel. This enables them to perform propulsion characterizations, 3D (Three Dimensional) maneuverability, particle cargo transport manipulation and exit from the chip. The microrobot selective integration inside microfluidics could lead to various in-vitro biologic or in-vivo biomedical applications.
微型移动机器人在各种应用中有着广阔的前景。这些应用包括靶向给药、局部测量、活检或微组装。在微流控环境中研究微型移动机器人是实现此类应用的关键一步。但在这种并非为机器人设计的环境中,集成过程和推进稳健性仍然带来技术挑战。在本文中,我们展示了一种具有三种不同运动方式的螺旋微型机器人,旨在实现这些目标。这些运动方式为滚动、旋转陀螺运动和游动。通过这些多种运动方式,微型机器人能够通过微流控通道选择性地集成到芯片中。这使它们能够进行推进特性研究、三维(3D)机动性研究、颗粒货物运输操作以及从芯片中退出。微型机器人在微流控环境中的选择性集成可能会带来各种体外生物学或体内生物医学应用。