Suppr超能文献

CT扫描有限元分析在预测轴向压缩和前屈下椎体骨折模式中的准确性。

Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion.

作者信息

Jackman Timothy M, DelMonaco Alex M, Morgan Elise F

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA, United States.

Department of Biomedical Engineering, Boston University, Boston, MA, United States; Department of Mechanical Engineering, Boston University, Boston, MA, United States.

出版信息

J Biomech. 2016 Jan 25;49(2):267-75. doi: 10.1016/j.jbiomech.2015.12.004. Epub 2015 Dec 11.

Abstract

Finite element (FE) models built from quantitative computed tomography (QCT) scans can provide patient-specific estimates of bone strength and fracture risk in the spine. While prior studies demonstrate accurate QCT-based FE predictions of vertebral stiffness and strength, the accuracy of the predicted failure patterns, i.e., the locations where failure occurs within the vertebra and the way in which the vertebra deforms as failure progresses, is less clear. This study used digital volume correlation (DVC) analyses of time-lapse micro-computed tomography (μCT) images acquired during mechanical testing (compression and anterior flexion) of thoracic spine segments (T7-T9, n=28) to measure displacements occurring throughout the T8 vertebral body at the ultimate point. These displacements were compared to those simulated by QCT-based FE analyses of T8. We hypothesized that the FE predictions would be more accurate when the boundary conditions are based on measurements of pressure distributions within intervertebral discs of similar level of disc degeneration vs. boundary conditions representing rigid platens. The FE simulations captured some of the general, qualitative features of the failure patterns; however, displacement errors ranged 12-279%. Contrary to our hypothesis, no differences in displacement errors were found when using boundary conditions representing measurements of disc pressure vs. rigid platens. The smallest displacement errors were obtained using boundary conditions that were measured directly by DVC at the T8 endplates. These findings indicate that further work is needed to develop methods of identifying physiological loading conditions for the vertebral body, for the purpose of achieving robust, patient-specific FE analyses of failure mechanisms.

摘要

由定量计算机断层扫描(QCT)扫描构建的有限元(FE)模型可以提供患者特异性的脊柱骨强度和骨折风险估计。虽然先前的研究表明基于QCT的FE对椎体刚度和强度的预测准确,但预测的失效模式的准确性,即椎体内部发生失效的位置以及随着失效进展椎体变形的方式,尚不清楚。本研究对胸椎节段(T7-T9,n=28)进行机械测试(压缩和前屈)期间采集的延时显微计算机断层扫描(μCT)图像进行数字体积相关(DVC)分析,以测量T8椎体在极限点处发生的位移。将这些位移与基于T8的QCT的FE分析模拟的位移进行比较。我们假设,当边界条件基于类似椎间盘退变水平的椎间盘内压力分布测量值而非代表刚性压板的边界条件时,FE预测将更准确。FE模拟捕捉到了失效模式的一些一般定性特征;然而,位移误差范围为12%-279%。与我们的假设相反,使用代表椎间盘压力测量值的边界条件与刚性压板时,未发现位移误差有差异。使用在T8终板处通过DVC直接测量的边界条件可获得最小的位移误差。这些发现表明,为了对失效机制进行稳健的、针对患者的FE分析,需要进一步开展工作来开发识别椎体生理负荷条件的方法。

相似文献

1
5
Effect of the intervertebral disc on vertebral bone strength prediction: a finite-element study.
Spine J. 2020 Apr;20(4):665-671. doi: 10.1016/j.spinee.2019.11.015. Epub 2019 Dec 10.
6
Effect of fabric on the accuracy of computed tomography-based finite element analyses of the vertebra.
Biomech Model Mechanobiol. 2020 Apr;19(2):505-517. doi: 10.1007/s10237-019-01225-2. Epub 2019 Sep 10.
7
Relative strength of thoracic vertebrae in axial compression versus flexion.
Spine J. 2009 Jun;9(6):478-85. doi: 10.1016/j.spinee.2009.02.010. Epub 2009 Apr 11.
8
Quantitative computed tomography-based predictions of vertebral strength in anterior bending.
Spine (Phila Pa 1976). 2007 Apr 20;32(9):1019-27. doi: 10.1097/01.brs.0000260979.98101.9c.
10
Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength.
Bone. 2007 Mar;40(3):767-74. doi: 10.1016/j.bone.2006.10.025. Epub 2006 Dec 15.

引用本文的文献

2
Comparing the predictions of CT-based subject-specific finite element models of human metastatic vertebrae with digital volume correlation measurements.
Biomech Model Mechanobiol. 2025 Jun;24(3):1017-1030. doi: 10.1007/s10237-025-01950-x. Epub 2025 Apr 19.
3
Risk of bony endplate failure during vertebral fracture.
J Mech Behav Biomed Mater. 2025 May;165:106939. doi: 10.1016/j.jmbbm.2025.106939. Epub 2025 Feb 11.
4
A data-driven framework for developing a unified density-modulus relationship for the human lumbar vertebral body.
J Mech Behav Biomed Mater. 2025 Mar;163:106888. doi: 10.1016/j.jmbbm.2025.106888. Epub 2025 Jan 10.
5
Disc degeneration influences the strain magnitude and stress distribution within the adjacent trabecular bone.
Front Bioeng Biotechnol. 2024 Dec 17;12:1511685. doi: 10.3389/fbioe.2024.1511685. eCollection 2024.
6
CT-based finite element simulating spatial bone damage accumulation predicts metastatic human vertebrae strength and stiffness.
Front Bioeng Biotechnol. 2024 Jul 23;12:1424553. doi: 10.3389/fbioe.2024.1424553. eCollection 2024.
7
Experimentally Validated Finite Element Analysis of Thoracic Spine Compression Fractures in a Porcine Model.
Bioengineering (Basel). 2024 Jan 18;11(1):96. doi: 10.3390/bioengineering11010096.
8
Geometric determinants of the mechanical behavior of image-based finite element models of the intervertebral disc.
J Orthop Res. 2024 Jun;42(6):1343-1355. doi: 10.1002/jor.25788. Epub 2024 Jan 21.
10
Experimental validation of a subject-specific finite element model of lumbar spine segment using digital image correlation.
PLoS One. 2022 Sep 9;17(9):e0272529. doi: 10.1371/journal.pone.0272529. eCollection 2022.

本文引用的文献

1
Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation.
Med Eng Phys. 2015 Jun;37(6):599-604. doi: 10.1016/j.medengphy.2015.03.007. Epub 2015 Apr 23.
2
Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion.
J Mech Behav Biomed Mater. 2015 Feb;42:54-66. doi: 10.1016/j.jmbbm.2014.10.016. Epub 2014 Nov 11.
5
Finite element analysis for prediction of bone strength.
Bonekey Rep. 2013 Aug 7;2:386. doi: 10.1038/bonekey.2013.120.
9
The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength.
Osteoporos Int. 2013 Dec;24(12):3021-30. doi: 10.1007/s00198-013-2417-3. Epub 2013 Jul 18.
10
Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body.
J Mech Behav Biomed Mater. 2013 Oct;26:136-47. doi: 10.1016/j.jmbbm.2013.04.026. Epub 2013 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验