Soltani Zahra, Xu Michelle, Radovitzky Raul, Stadelmann Marc A, Hackney David, Alkalay Ron N
Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.
Institute for Soldier Nanotechnologies Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, United States.
Front Bioeng Biotechnol. 2024 Jul 23;12:1424553. doi: 10.3389/fbioe.2024.1424553. eCollection 2024.
Pathologic vertebral fractures are devastating for patients with spinal metastases. However, the mechanical process underlying these fractures is poorly understood, limiting physician's ability to predict which vertebral bodies will fail. Here, we show the development of a damage-based finite element framework producing highly reliable pathologic vertebral strength and stiffness predictions from X-Ray computed tomography (CT) data. We evaluated the performance of specimen-specific material calibration vs. global material calibration across osteosclerotic, osteolytic, and mixed lesion vertebrae that we derived using a machine learning approach. The FE framework using global calibration strongly predicted the pathologic vertebrae stiffness ( = 0.90, < 0.0001) and strength ( = 0.83, = 0.0002) despite the remarkable variance in the pathologic bone structure and density. Specimen-specific calibration produced a near-perfect prediction of both stiffness and strength ( = 0.99, < 0.0001, for both), validating the FE approach. The FE damage-based simulations highlighted the differences in the pattern of spatial damage evolution between osteosclerotic and osteolytic vertebral bodies. With failure, the FE simulation suggested a common damage evolution pathway progressing largely localized to the low bone modulus regions within the vertebral volume. Applying this FE approach may allow us to predict the onset and anatomical location of vertebral failure, which is critical for developing image-based diagnostics of impending pathologic vertebral fractures.
病理性椎体骨折对脊柱转移瘤患者来说是极具破坏性的。然而,这些骨折背后的力学过程却鲜为人知,这限制了医生预测哪些椎体将会发生骨折的能力。在此,我们展示了一种基于损伤的有限元框架的开发,该框架可根据X射线计算机断层扫描(CT)数据生成高度可靠的病理性椎体强度和刚度预测。我们评估了在使用机器学习方法得出的骨硬化性、溶骨性和混合性病变椎体中,针对特定标本的材料校准与全局材料校准的性能。尽管病理性骨结构和密度存在显著差异,但使用全局校准的有限元框架仍能有力地预测病理性椎体的刚度(R = 0.90,P < 0.0001)和强度(R = 0.83,P = 0.0002)。针对特定标本的校准对刚度和强度都产生了近乎完美的预测(两者的R均为0.99,P < 0.0001),验证了有限元方法的有效性。基于有限元损伤的模拟突出了骨硬化性和溶骨性椎体之间空间损伤演变模式的差异。在骨折发生时,有限元模拟显示出一种常见的损伤演变途径,主要局限于椎体内低骨模量区域。应用这种有限元方法可能使我们能够预测椎体骨折的发生和解剖位置,这对于开发基于图像的即将发生的病理性椎体骨折诊断方法至关重要。