Suppr超能文献

不对称纳米结构对肌动蛋白生物分子和细丝消光差异特性的影响。

Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments.

作者信息

Khoo E H, Leong Eunice S P, Wu S J, Phua W K, Hor Y L, Liu Y J

机构信息

Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.

Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore.

出版信息

Sci Rep. 2016 Jan 21;6:19658. doi: 10.1038/srep19658.

Abstract

In this paper, symmetric and asymmetric tapering on the arms of the gammadion nanostructure is proposed to enhance both local field distribution and extinction difference (ED). The asymmetric tapered gammadion with tapering fraction (TF) of 0.67 is seen to have the largest ED and spatial local field distribution, producing a large wavelength shift of more than 50 percent as compared to the untapered gammadion nanostructures when immersed in a solution of actin molecules and filaments. The optical chirality, ζ shows that the larger local field amplitudes produced by the asymmetric designs increases the rate of chiral molecules excitation. This enhanced field is strongly rotating and highly sensitive to single molecules and larger filaments. Here, we show that the ED, optical chirality, sensitivity and rate of chiral molecules excitation can be improved by incorporating asymmetric designs into chiral gammadion nanostructures through tapering.

摘要

在本文中,提出了对伽马叠字纳米结构臂进行对称和不对称渐缩,以增强局部场分布和消光差异(ED)。渐缩分数(TF)为0.67的不对称渐缩伽马叠字被认为具有最大的消光差异和空间局部场分布,当浸入肌动蛋白分子和细丝的溶液中时,与未渐缩的伽马叠字纳米结构相比,产生超过50%的大波长偏移。光学手性ζ表明,不对称设计产生的较大局部场振幅增加了手性分子的激发速率。这种增强的场强烈旋转,对单个分子和较大的细丝高度敏感。在这里,我们表明,通过渐缩将不对称设计纳入手性伽马叠字纳米结构中,可以提高消光差异、光学手性、灵敏度和手性分子的激发速率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7719/4726270/7071952bb83b/srep19658-f1.jpg

相似文献

2
Formation of chiral fields in a symmetric environment.
Opt Express. 2012 Nov 19;20(24):26326-36. doi: 10.1364/OE.20.026326.
3
Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.
Chemphyschem. 2012 Jul 16;13(10):2551-60. doi: 10.1002/cphc.201100958. Epub 2012 Feb 16.
5
Optical Activity Governed by Local Chiral Structures in Two-Dimensional Curved Metallic Nanostructures.
Chirality. 2016 Jul;28(7):540-4. doi: 10.1002/chir.22611. Epub 2016 Jun 1.
7
Self-Assembled Chiral Nanostructures as Scaffolds for Asymmetric Reactions.
Chemistry. 2017 Jul 18;23(40):9439-9450. doi: 10.1002/chem.201700727. Epub 2017 Jun 9.
9
Circular extinction of plasmonic silver nanocaps and gas sensing.
Faraday Discuss. 2016;186:345-52. doi: 10.1039/c5fd00138b.
10
Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.
J Microsc. 2014 Mar;253(3):183-90. doi: 10.1111/jmi.12108. Epub 2014 Jan 6.

引用本文的文献

1
Recent Advances of Plasmonic Nanoparticles and their Applications.
Materials (Basel). 2018 Sep 26;11(10):1833. doi: 10.3390/ma11101833.
2
Superchiral Plasmonic Phase Sensitivity for Fingerprinting of Protein Interface Structure.
ACS Nano. 2017 Dec 26;11(12):12049-12056. doi: 10.1021/acsnano.7b04698. Epub 2017 Dec 15.
3
Polarization invariant plasmonic nanostructures for sensing applications.
Sci Rep. 2017 Aug 8;7(1):7539. doi: 10.1038/s41598-017-08020-y.
4
Chirality detection of enantiomers using twisted optical metamaterials.
Nat Commun. 2017 Jan 25;8:14180. doi: 10.1038/ncomms14180.

本文引用的文献

1
Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods.
J Phys Chem Lett. 2011 Apr 21;2(8):846-51. doi: 10.1021/jz200279x. Epub 2011 Mar 28.
2
"Superchiral" Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures.
J Am Chem Soc. 2015 Jul 8;137(26):8380-3. doi: 10.1021/jacs.5b04806. Epub 2015 Jun 26.
4
Helicity-dependent three-dimensional optical trapping of chiral microparticles.
Nat Commun. 2014 Jul 31;5:4491. doi: 10.1038/ncomms5491.
5
Spontaneous chiral symmetry breaking in metamaterials.
Nat Commun. 2014 Jul 18;5:4441. doi: 10.1038/ncomms5441.
6
Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures.
Nano Lett. 2013 Jul 10;13(7):3256-61. doi: 10.1021/nl4013776. Epub 2013 Jun 24.
7
Gelation-induced visible supramolecular chiral recognition by fluorescent metal complexes of quinolinol-glutamide.
Langmuir. 2013 May 7;29(18):5435-42. doi: 10.1021/la400562f. Epub 2013 Apr 23.
8
Plasmonic diastereomers: adding up chiral centers.
Nano Lett. 2013 Feb 13;13(2):600-6. doi: 10.1021/nl3041355. Epub 2013 Jan 8.
9
Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons.
Science. 2013 Jan 25;339(6118):452-6. doi: 10.1126/science.1232251. Epub 2012 Dec 13.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验