School of Chemistry, Joseph Black Building, University of Glasgow , Glasgow G12 8QQ, United Kingdom.
Avacta Life Sciences , Ash Way, Thorp Arch Estate, Wetherby LS23 7FA, United Kingdom.
ACS Nano. 2017 Dec 26;11(12):12049-12056. doi: 10.1021/acsnano.7b04698. Epub 2017 Dec 15.
The structure adopted by biomaterials, such as proteins, at interfaces is a crucial parameter in a range of important biological problems. It is a critical property in defining the functionality of cell/bacterial membranes and biofilms (i.e., in antibiotic-resistant infections) and the exploitation of immobilized enzymes in biocatalysis. The intrinsically small quantities of materials at interfaces precludes the application of conventional spectroscopic phenomena routinely used for (bio)structural analysis due to a lack of sensitivity. We show that the interaction of proteins with superchiral fields induces asymmetric changes in retardation phase effects of excited bright and dark modes of a chiral plasmonic nanostructure. Phase retardations are obtained by a simple procedure, which involves fitting the line shape of resonances in the reflectance spectra. These interference effects provide fingerprints that are an incisive probe of the structure of interfacial biomolecules. Using these fingerprints, layers composed of structurally related proteins with differing geometries can be discriminated. Thus, we demonstrate a powerful tool for the bioanalytical toolbox.
生物材料(如蛋白质)在界面处的结构是一系列重要生物学问题的关键参数。它是定义细胞膜和生物膜(即抗生素耐药性感染)功能以及固定化酶在生物催化中的应用的关键性质。由于缺乏灵敏度,界面处的材料数量本来就很小,因此无法应用常规光谱现象进行(生物)结构分析。我们表明,蛋白质与超手性场的相互作用会引起手性等离子体纳米结构的激发亮暗模式的延迟相位效应的不对称变化。通过涉及拟合反射光谱中共振线形状的简单程序获得相延迟。这些干涉效应提供了指纹,这是界面生物分子结构的锐利探针。使用这些指纹,可以区分具有不同几何形状的结构相关蛋白质组成的层。因此,我们展示了生物分析工具箱中的强大工具。