Suppr超能文献

β-淀粉酶1(BAM1)降解暂态淀粉以在干旱胁迫期间维持脯氨酸生物合成。

β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress.

作者信息

Zanella Martina, Borghi Gian Luca, Pirone Claudia, Thalmann Matthias, Pazmino Diana, Costa Alex, Santelia Diana, Trost Paolo, Sparla Francesca

机构信息

Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.

Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.

出版信息

J Exp Bot. 2016 Mar;67(6):1819-26. doi: 10.1093/jxb/erv572. Epub 2016 Jan 20.

Abstract

During photosynthesis of higher plants, absorbed light energy is converted into chemical energy that, in part, is accumulated in the form of transitory starch within chloroplasts. In the following night, transitory starch is mobilized to sustain the heterotrophic metabolism of the plant. β-amylases are glucan hydrolases that cleave α-1,4-glycosidic bonds of starch and release maltose units from the non-reducing end of the polysaccharide chain. In Arabidopsis, nocturnal degradation of transitory starch involves mainly β-amylase-3 (BAM3). A second β-amylase isoform, β-amylase-1 (BAM1), is involved in diurnal starch degradation in guard cells, a process that sustains stomata opening. However, BAM1 also contributes to diurnal starch turnover in mesophyll cells under osmotic stress. With the aim of dissecting the role of β-amylases in osmotic stress responses in Arabidopsis, mutant plants lacking either BAM1 or BAM3 were subject to a mild (150mM mannitol) and prolonged (up to one week) osmotic stress. We show here that leaves of osmotically-stressed bam1 plants accumulated more starch and fewer soluble sugars than both wild-type and bam3 plants during the day. Moreover, bam1 mutants were impaired in proline accumulation and suffered from stronger lipid peroxidation, compared with both wild-type and bam3 plants. Taken together, these data strongly suggest that carbon skeletons deriving from BAM1 diurnal degradation of transitory starch support the biosynthesis of proline required to face the osmotic stress. We propose the transitory-starch/proline interplay as an interesting trait to be tackled by breeding technologies aimingto improve drought tolerance in relevant crops.

摘要

在高等植物的光合作用过程中,吸收的光能被转化为化学能,其中一部分以暂时淀粉的形式积累在叶绿体中。在随后的夜晚,暂时淀粉被调动起来以维持植物的异养代谢。β-淀粉酶是一种葡聚糖水解酶,它能切割淀粉的α-1,4-糖苷键,并从多糖链的非还原端释放麦芽糖单位。在拟南芥中,暂时淀粉的夜间降解主要涉及β-淀粉酶-3(BAM3)。第二种β-淀粉酶同工型β-淀粉酶-1(BAM1)参与保卫细胞中的日间淀粉降解,这一过程维持气孔开放。然而,在渗透胁迫下,BAM1也有助于叶肉细胞中的日间淀粉周转。为了剖析β-淀粉酶在拟南芥渗透胁迫反应中的作用,缺乏BAM1或BAM3的突变植物遭受了轻度(150mM甘露醇)和长期(长达一周)的渗透胁迫。我们在此表明,在白天,渗透胁迫下的bam1植物叶片比野生型和bam3植物积累了更多的淀粉和更少的可溶性糖。此外,与野生型和bam3植物相比,bam1突变体在脯氨酸积累方面受损,并且遭受更强的脂质过氧化。综上所述,这些数据强烈表明,BAM1对暂时淀粉的日间降解产生的碳骨架支持了应对渗透胁迫所需的脯氨酸的生物合成。我们提出暂时淀粉/脯氨酸相互作用是育种技术旨在改善相关作物耐旱性时需要解决的一个有趣特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验