Multivariate Behav Res. 1989 Jan 1;24(1):59-69. doi: 10.1207/s15327906mbr2401_4.
Monte Carlo research increasingly seems to favor the use of parallel analysis as a method for determining the "correct" number of factors in factor analysis or components in principal components analysis. We present a regression equation for predicting parallel analysis values used to decide the number of principal components to retain. This equation is appropriate for predicting criterion mean eigenvalues and was derived from random data sets containing between 5 and 50 variables and between 50 and 500 subjects. This relatively simple equation is more accurate for predicting mean eigenvalues from random data matrices with unities in the diagonals than a previously published equation. Moreover, given that the parallel analysis decision rule may be too dependent on chance, our equation is also used to predict the 95th percentile point in distributions of eigenvalues generated from random data matrices. Multiple correlations for all analyses were at least .95. Regression weights for predicting the first 33 mean and 95th percentile eigenvalues are given in easy-to-use tables.
蒙特卡罗研究似乎越来越倾向于使用平行分析作为确定因子分析或主成分分析中“正确”因子数或成分数的方法。我们提出了一个回归方程,用于预测用于确定要保留的主成分数的平行分析值。该方程适用于预测标准特征值,并从包含 5 到 50 个变量和 50 到 500 个主体的随机数据集推导得出。与之前发表的方程相比,这个相对简单的方程更能准确预测具有对角线上单位的随机数据矩阵的平均特征值。此外,由于平行分析决策规则可能过于依赖机会,我们的方程还用于预测从随机数据矩阵生成的特征值分布的第 95 个百分位数点。所有分析的多重相关系数至少为.95。用于预测前 33 个平均值和第 95 个百分位数特征值的回归权重在易于使用的表格中给出。