Suppr超能文献

分析培养海马神经元中驱动蛋白运动结构域的易位

Analyzing kinesin motor domain translocation in cultured hippocampal neurons.

作者信息

Yang Rui, Bentley Marvin, Huang Chung-Fang, Banker Gary

机构信息

Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA.

出版信息

Methods Cell Biol. 2016;131:217-232. doi: 10.1016/bs.mcb.2015.06.021. Epub 2015 Sep 3.

Abstract

Neuronal microtubules are subject to extensive posttranslational modifications and are bound by MAPs, tip-binding proteins, and other accessory proteins. All of these features, which are difficult to replicate in vitro, are likely to influence the translocation of kinesin motors. Here we describe assays for evaluating the translocation of a population of fluorescently labeled kinesin motor domains, based on their accumulation in regions of the cell enriched in microtubule plus ends. Neurons lend themselves to these experiments because of their microtubule organization. In axons, microtubules are oriented with their plus ends out; dendrites contain a mixed population of microtubules, but those near the tips are also plus end out. The assays involve the expression of constitutively active kinesins that can walk processively, but that lack the autoinhibitory domain in the tail that normally prevents their binding to microtubules until they attach to vesicles. The degree to which such motor domains accumulate at neurite tips serves as a measure of the efficiency of their translocation. Although these assays cannot provide the kind of quantitative kinetic information obtained from in vitro assays, they offer a simple way to examine kinesin translocation in living neurons. They can be used to compare the translocation efficiency of different kinesin motors and to evaluate how mutations or posttranslational modifications within the motor domain influence kinesin translocation. Changes to motor domain accumulation in these assays can also serve as readout for changes in the microtubule cytoskeleton that affect kinesin translocation.

摘要

神经元微管会经历广泛的翻译后修饰,并与微管相关蛋白(MAPs)、末端结合蛋白及其他辅助蛋白结合。所有这些在体外难以复制的特性,都可能影响驱动蛋白的转运。在此,我们描述了基于荧光标记的驱动蛋白运动结构域在富含微管正端的细胞区域中的积累情况来评估其转运的实验方法。神经元因其微管组织而适合进行这些实验。在轴突中,微管的正端向外;树突含有混合的微管群体,但靠近末端的那些微管也是正端向外。这些实验方法涉及组成型激活的驱动蛋白的表达,这些驱动蛋白能够持续移动,但尾部缺乏通常会阻止它们与微管结合直至它们附着到囊泡上的自抑制结构域。此类运动结构域在神经突末端积累的程度可作为其转运效率的一种衡量指标。尽管这些实验方法无法提供从体外实验中获得的那种定量动力学信息,但它们提供了一种在活神经元中检测驱动蛋白转运的简单方法。它们可用于比较不同驱动蛋白的转运效率,并评估运动结构域内的突变或翻译后修饰如何影响驱动蛋白的转运。在这些实验方法中,运动结构域积累的变化也可作为影响驱动蛋白转运的微管细胞骨架变化的读数。

相似文献

10
Three-Step Model for Polarized Sorting of KIF17 into Dendrites.KIF17向树突进行极化分选的三步模型。
Curr Biol. 2016 Jul 11;26(13):1705-1712. doi: 10.1016/j.cub.2016.04.057. Epub 2016 Jun 2.

引用本文的文献

10
The cellular mechanisms that maintain neuronal polarity.维持神经元极性的细胞机制。
Nat Rev Neurosci. 2016 Oct;17(10):611-22. doi: 10.1038/nrn.2016.100. Epub 2016 Aug 11.

本文引用的文献

6
Post-translational modifications of tubulin.微管蛋白的翻译后修饰。
Curr Biol. 2014 May 5;24(9):R351-4. doi: 10.1016/j.cub.2014.03.032.
7
Dimerization of mammalian kinesin-3 motors results in superprocessive motion.哺乳动物驱动蛋白-3 二聚化导致超级运动。
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5562-7. doi: 10.1073/pnas.1400759111. Epub 2014 Apr 2.
10
MAPping out distribution routes for kinesin couriers.绘制驱动蛋白载体的分布路径图。
Biol Cell. 2013 Oct;105(10):465-87. doi: 10.1111/boc.201300012. Epub 2013 Jul 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验