Suppr超能文献

简单斜率后续检验会误导我们吗?交互作用可视化与报告的进展。

Do simple slopes follow-up tests lead us astray? Advancements in the visualization and reporting of interactions.

作者信息

Finsaas Megan C, Goldstein Brandon L

机构信息

Department of Psychology.

出版信息

Psychol Methods. 2021 Feb;26(1):38-60. doi: 10.1037/met0000266. Epub 2020 Apr 20.

Abstract

[Correction Notice: An Erratum for this article was reported online in on Sep 24 2020 (see record 2020-72092-001). In the article "Do Simple Slopes Follow-Up Tests Lead Us Astray? Advancements in the Visualization and Reporting of Interactions," by Megan C. Finsaas and Brandon L. Goldstein (Psychological Methods, advance online publication. April 20, 2020. http://dx.doi.org/10.1037/ met0000266), Figure 5 contained an error. The second sentence of the caption of Figure 5 should read: "The left plot depicts the region of significance when life stress is acting as the moderator, and the right when neuroticism is acting as the moderator." All versions of this article have been corrected.] Statistical interactions between two continuous variables in linear regression are common in psychological science. As a follow-up analysis of how the moderator impacts the predictor-outcome relationship, researchers often use the pick-a-point simple slopes method. The simple slopes method requires researchers to make two decisions: (a) which moderator values should be used for plotting and testing simple slopes, and (b) which predictor should be considered the moderator. These decisions are meant to be driven by theory, but in practice researchers may use arbitrary conventions or theoretical reasons may not exist. Even when done thoughtfully, simple slopes analysis omits important information about the interaction. Consequently, it is problematic that the simple slopes approach is the primary basis for interpreting interactions. A more nuanced alternative is to utilize the Johnson-Neyman technique in conjunction with a regression plane depicting the interaction effect in three-dimensional space. This approach does not involve picking points but rather shows the slopes at all possible values of the predictor variables and gives both predictors equal weight instead of selecting a de facto moderator. Because this approach is complex and user-friendly implementation tools are lacking, we present a tutorial explaining the Johnson-Neyman technique and how to visualize interactions in 3-D space along with a new open-source tool that completes these procedures. We discuss how this approach facilitates interpretation and communication as well as its implications for replication efforts, transparency, and clinical applications. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

[更正通知:本文的一篇勘误于2020年9月24日在线发布(见记录2020-72092-001)。在梅根·C·芬萨斯和布兰登·L·戈尔茨坦所著的《简单斜率后续检验会误导我们吗?交互作用可视化与报告的进展》(《心理方法》,在线优先发表。2020年4月20日。http://dx.doi.org/10.1037/met0000266)一文中,图5存在错误。图5的标题第二句应改为:“左图描绘了生活压力作为调节变量时的显著区域,右图描绘了神经质作为调节变量时的显著区域。”本文的所有版本均已更正。]线性回归中两个连续变量之间的统计交互作用在心理学领域很常见。作为对调节变量如何影响预测变量与结果关系的后续分析,研究人员通常使用选点简单斜率法。简单斜率法要求研究人员做出两个决策:(a)应使用哪些调节变量值来绘制和检验简单斜率,以及(b)应将哪个预测变量视为调节变量。这些决策本应基于理论,但在实际操作中,研究人员可能会采用任意惯例,或者根本不存在理论依据。即使经过深思熟虑,简单斜率分析也会遗漏有关交互作用的重要信息。因此,简单斜率法作为解释交互作用的主要依据存在问题。一种更细致入微的替代方法是将约翰逊 - 奈曼技术与描绘三维空间中交互作用效应的回归平面结合使用。这种方法不涉及选点,而是展示预测变量所有可能值处的斜率,并对两个预测变量给予同等权重,而不是选择一个事实上的调节变量。由于这种方法复杂且缺乏用户友好的实现工具,我们提供了一个教程,解释约翰逊 - 奈曼技术以及如何在三维空间中可视化交互作用,同时还介绍了一个完成这些程序的新开源工具。我们讨论了这种方法如何促进解释和交流,以及它对重复研究、透明度和临床应用的影响。(PsycInfo数据库记录(c)2021美国心理学会,保留所有权利)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验