Suppr超能文献

两实例重复测量设计中的调节分析:探测方法和多个调节模型。

Moderation analysis in two-instance repeated measures designs: Probing methods and multiple moderator models.

机构信息

Ohio State University, Columbus, OH, USA.

Department of Psychology, University of California-Los Angeles, 1285 Franz Hall, Los Angeles, CA, 90095, USA.

出版信息

Behav Res Methods. 2019 Feb;51(1):61-82. doi: 10.3758/s13428-018-1088-6.

Abstract

Moderation hypotheses appear in every area of psychological science, but the methods for testing and probing moderation in two-instance repeated measures designs are incomplete. This article begins with a short overview of testing and probing interactions in between-participant designs. Next I review the methods outlined in Judd, McClelland, and Smith (Psychological Methods 1; 366-378, 1996) and Judd, Kenny, and McClelland (Psychological Methods 6; 115-134, 2001) for estimating and conducting inference on an interaction between a repeated measures factor and a single between-participant moderator using linear regression. I extend these methods in two ways: First, the article shows how to probe interactions in a two-instance repeated measures design using both the pick-a-point approach and the Johnson-Neyman procedure. Second, I extend the models described by Judd et al. (1996) to multiple-moderator models, including additive and multiplicative moderation. Worked examples with a published dataset are included, to demonstrate the methods described throughout the article. Additionally, I demonstrate how to use Mplus and MEMORE (Mediation and Moderation for Repeated Measures; available at http://akmontoya.com ), an easy-to-use tool available for SPSS and SAS, to estimate and probe interactions when the focal predictor is a within-participant factor, reducing the computational burden for researchers. I describe some alternative methods of analysis, including structural equation models and multilevel models. The conclusion touches on some extensions of the methods described in the article and potentially fruitful areas of further research.

摘要

moderation 假设出现在心理学科学的各个领域,但在两实例重复测量设计中检验和探测 moderation 的方法并不完善。本文首先简要概述了在参与者间设计中检验和探测交互作用的方法。接下来,我回顾了 Judd、McClelland 和 Smith(《心理方法》1;366-378,1996)和 Judd、Kenny 和 McClelland(《心理方法》6;115-134,2001)提出的方法,用于使用线性回归估计和进行重复测量因素与单个参与者间调节变量之间交互作用的推断。我以两种方式扩展了这些方法:首先,本文展示了如何使用单点选择法和 Johnson-Neyman 程序在两实例重复测量设计中探测交互作用。其次,我扩展了 Judd 等人(1996)描述的模型,包括加法和乘法 moderation,包括多调节变量模型。包含一个已发表数据集的工作示例,用于演示整篇文章中描述的方法。此外,我展示了如何使用 Mplus 和 MEMORE(重复测量的中介和调节;可在 http://akmontoya.com 上获得),这是一个易于使用的适用于 SPSS 和 SAS 的工具,当焦点预测因子是参与者内因素时,用于估计和探测交互作用,减轻了研究人员的计算负担。我描述了一些替代分析方法,包括结构方程模型和多层次模型。结论涉及了本文中描述的方法的一些扩展以及进一步研究的潜在有成果的领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验